Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Differenzia.
Passaggio 1.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.1.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2
Calcola .
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2.3
Moltiplica per .
Passaggio 1.1.3
Differenzia usando la regola della costante.
Passaggio 1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3.2
Somma e .
Passaggio 1.2
Trova la derivata seconda.
Passaggio 1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.2
Calcola .
Passaggio 1.2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.2.3
Moltiplica per .
Passaggio 1.2.3
Calcola .
Passaggio 1.2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.3.3
Moltiplica per .
Passaggio 1.3
La derivata seconda di rispetto a è .
Passaggio 2
Passaggio 2.1
Imposta la derivata seconda uguale a .
Passaggio 2.2
Scomponi da .
Passaggio 2.2.1
Scomponi da .
Passaggio 2.2.2
Scomponi da .
Passaggio 2.2.3
Scomponi da .
Passaggio 2.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 2.4
Imposta uguale a .
Passaggio 2.5
Imposta uguale a e risolvi per .
Passaggio 2.5.1
Imposta uguale a .
Passaggio 2.5.2
Risolvi per .
Passaggio 2.5.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 2.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 2.5.2.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 2.5.2.3.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 2.5.2.3.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 2.5.2.3.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 2.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 3
Passaggio 3.1
Sostituisci in per trovare il valore di .
Passaggio 3.1.1
Sostituisci la variabile con nell'espressione.
Passaggio 3.1.2
Semplifica il risultato.
Passaggio 3.1.2.1
Semplifica ciascun termine.
Passaggio 3.1.2.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 3.1.2.1.2
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 3.1.2.1.3
Moltiplica per .
Passaggio 3.1.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 3.1.2.2.1
Somma e .
Passaggio 3.1.2.2.2
Sottrai da .
Passaggio 3.1.2.3
La risposta finale è .
Passaggio 3.2
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 3.3
Sostituisci in per trovare il valore di .
Passaggio 3.3.1
Sostituisci la variabile con nell'espressione.
Passaggio 3.3.2
Semplifica il risultato.
Passaggio 3.3.2.1
Semplifica ciascun termine.
Passaggio 3.3.2.1.1
Riscrivi come .
Passaggio 3.3.2.1.2
Eleva alla potenza di .
Passaggio 3.3.2.1.3
Riscrivi come .
Passaggio 3.3.2.1.3.1
Scomponi da .
Passaggio 3.3.2.1.3.2
Riscrivi come .
Passaggio 3.3.2.1.4
Estrai i termini dal radicale.
Passaggio 3.3.2.1.5
Riscrivi come .
Passaggio 3.3.2.1.6
Eleva alla potenza di .
Passaggio 3.3.2.1.7
Riscrivi come .
Passaggio 3.3.2.1.7.1
Scomponi da .
Passaggio 3.3.2.1.7.2
Riscrivi come .
Passaggio 3.3.2.1.8
Estrai i termini dal radicale.
Passaggio 3.3.2.1.9
Moltiplica per .
Passaggio 3.3.2.2
Sottrai da .
Passaggio 3.3.2.3
La risposta finale è .
Passaggio 3.4
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 3.5
Sostituisci in per trovare il valore di .
Passaggio 3.5.1
Sostituisci la variabile con nell'espressione.
Passaggio 3.5.2
Semplifica il risultato.
Passaggio 3.5.2.1
Semplifica ciascun termine.
Passaggio 3.5.2.1.1
Applica la regola del prodotto a .
Passaggio 3.5.2.1.2
Eleva alla potenza di .
Passaggio 3.5.2.1.3
Riscrivi come .
Passaggio 3.5.2.1.4
Eleva alla potenza di .
Passaggio 3.5.2.1.5
Riscrivi come .
Passaggio 3.5.2.1.5.1
Scomponi da .
Passaggio 3.5.2.1.5.2
Riscrivi come .
Passaggio 3.5.2.1.6
Estrai i termini dal radicale.
Passaggio 3.5.2.1.7
Moltiplica per .
Passaggio 3.5.2.1.8
Applica la regola del prodotto a .
Passaggio 3.5.2.1.9
Eleva alla potenza di .
Passaggio 3.5.2.1.10
Riscrivi come .
Passaggio 3.5.2.1.11
Eleva alla potenza di .
Passaggio 3.5.2.1.12
Riscrivi come .
Passaggio 3.5.2.1.12.1
Scomponi da .
Passaggio 3.5.2.1.12.2
Riscrivi come .
Passaggio 3.5.2.1.13
Estrai i termini dal radicale.
Passaggio 3.5.2.1.14
Moltiplica per .
Passaggio 3.5.2.1.15
Moltiplica per .
Passaggio 3.5.2.2
Somma e .
Passaggio 3.5.2.3
La risposta finale è .
Passaggio 3.6
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 3.7
Determina i punti che potrebbero essere punti di flesso.
Passaggio 4
Dividi in intervalli intorno ai punti che potrebbero potenzialmente essere punti di flesso.
Passaggio 5
Passaggio 5.1
Sostituisci la variabile con nell'espressione.
Passaggio 5.2
Semplifica il risultato.
Passaggio 5.2.1
Semplifica ciascun termine.
Passaggio 5.2.1.1
Eleva alla potenza di .
Passaggio 5.2.1.2
Moltiplica per .
Passaggio 5.2.1.3
Moltiplica per .
Passaggio 5.2.2
Somma e .
Passaggio 5.2.3
La risposta finale è .
Passaggio 5.3
Per , la derivata seconda è . Poiché il valore è negativo, la derivata seconda è decrescente nell'intervallo .
Decrescente su perché
Decrescente su perché
Passaggio 6
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Passaggio 6.2.1
Semplifica ciascun termine.
Passaggio 6.2.1.1
Eleva alla potenza di .
Passaggio 6.2.1.2
Moltiplica per .
Passaggio 6.2.1.3
Moltiplica per .
Passaggio 6.2.2
Somma e .
Passaggio 6.2.3
La risposta finale è .
Passaggio 6.3
In corrispondenza di , la derivata seconda è . Poiché il valore è positivo, la derivata seconda è crescente sull'intervallo .
Crescente su perché
Crescente su perché
Passaggio 7
Passaggio 7.1
Sostituisci la variabile con nell'espressione.
Passaggio 7.2
Semplifica il risultato.
Passaggio 7.2.1
Semplifica ciascun termine.
Passaggio 7.2.1.1
Eleva alla potenza di .
Passaggio 7.2.1.2
Moltiplica per .
Passaggio 7.2.1.3
Moltiplica per .
Passaggio 7.2.2
Sottrai da .
Passaggio 7.2.3
La risposta finale è .
Passaggio 7.3
Per , la derivata seconda è . Poiché il valore è negativo, la derivata seconda è decrescente nell'intervallo .
Decrescente su perché
Decrescente su perché
Passaggio 8
Passaggio 8.1
Sostituisci la variabile con nell'espressione.
Passaggio 8.2
Semplifica il risultato.
Passaggio 8.2.1
Semplifica ciascun termine.
Passaggio 8.2.1.1
Eleva alla potenza di .
Passaggio 8.2.1.2
Moltiplica per .
Passaggio 8.2.1.3
Moltiplica per .
Passaggio 8.2.2
Sottrai da .
Passaggio 8.2.3
La risposta finale è .
Passaggio 8.3
In corrispondenza di , la derivata seconda è . Poiché il valore è positivo, la derivata seconda è crescente sull'intervallo .
Crescente su perché
Crescente su perché
Passaggio 9
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Passaggio 10