Inserisci un problema...
Calcolo Esempi
Passaggio 1
Scrivi come funzione.
Passaggio 2
Passaggio 2.1
Trova la derivata prima.
Passaggio 2.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.1.2
Calcola .
Passaggio 2.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.1.2.3
e .
Passaggio 2.1.2.4
e .
Passaggio 2.1.2.5
Elimina il fattore comune di e .
Passaggio 2.1.2.5.1
Scomponi da .
Passaggio 2.1.2.5.2
Elimina i fattori comuni.
Passaggio 2.1.2.5.2.1
Scomponi da .
Passaggio 2.1.2.5.2.2
Elimina il fattore comune.
Passaggio 2.1.2.5.2.3
Riscrivi l'espressione.
Passaggio 2.1.3
Calcola .
Passaggio 2.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.1.3.3
Moltiplica per .
Passaggio 2.2
Trova la derivata seconda.
Passaggio 2.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2.2
Calcola .
Passaggio 2.2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.2.3
e .
Passaggio 2.2.2.4
e .
Passaggio 2.2.3
Calcola .
Passaggio 2.2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.3.3
Moltiplica per .
Passaggio 2.3
La derivata seconda di rispetto a è .
Passaggio 3
Passaggio 3.1
Imposta la derivata seconda uguale a .
Passaggio 3.2
Somma a entrambi i lati dell'equazione.
Passaggio 3.3
Moltiplica entrambi i lati dell'equazione per .
Passaggio 3.4
Semplifica entrambi i lati dell'equazione.
Passaggio 3.4.1
Semplifica il lato sinistro.
Passaggio 3.4.1.1
Semplifica .
Passaggio 3.4.1.1.1
Combina.
Passaggio 3.4.1.1.2
Elimina il fattore comune di .
Passaggio 3.4.1.1.2.1
Elimina il fattore comune.
Passaggio 3.4.1.1.2.2
Riscrivi l'espressione.
Passaggio 3.4.1.1.3
Elimina il fattore comune di .
Passaggio 3.4.1.1.3.1
Elimina il fattore comune.
Passaggio 3.4.1.1.3.2
Dividi per .
Passaggio 3.4.2
Semplifica il lato destro.
Passaggio 3.4.2.1
Semplifica .
Passaggio 3.4.2.1.1
Elimina il fattore comune di .
Passaggio 3.4.2.1.1.1
Scomponi da .
Passaggio 3.4.2.1.1.2
Elimina il fattore comune.
Passaggio 3.4.2.1.1.3
Riscrivi l'espressione.
Passaggio 3.4.2.1.2
Moltiplica per .
Passaggio 3.5
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 3.6
Semplifica .
Passaggio 3.6.1
Riscrivi come .
Passaggio 3.6.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 3.7
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 3.7.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 3.7.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 3.7.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 4
Passaggio 4.1
Sostituisci in per trovare il valore di .
Passaggio 4.1.1
Sostituisci la variabile con nell'espressione.
Passaggio 4.1.2
Semplifica il risultato.
Passaggio 4.1.2.1
Semplifica ciascun termine.
Passaggio 4.1.2.1.1
Eleva alla potenza di .
Passaggio 4.1.2.1.2
Elimina il fattore comune di .
Passaggio 4.1.2.1.2.1
Scomponi da .
Passaggio 4.1.2.1.2.2
Elimina il fattore comune.
Passaggio 4.1.2.1.2.3
Riscrivi l'espressione.
Passaggio 4.1.2.1.3
Eleva alla potenza di .
Passaggio 4.1.2.1.4
Moltiplica per .
Passaggio 4.1.2.2
Sottrai da .
Passaggio 4.1.2.3
La risposta finale è .
Passaggio 4.2
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 4.3
Sostituisci in per trovare il valore di .
Passaggio 4.3.1
Sostituisci la variabile con nell'espressione.
Passaggio 4.3.2
Semplifica il risultato.
Passaggio 4.3.2.1
Semplifica ciascun termine.
Passaggio 4.3.2.1.1
Eleva alla potenza di .
Passaggio 4.3.2.1.2
Elimina il fattore comune di .
Passaggio 4.3.2.1.2.1
Scomponi da .
Passaggio 4.3.2.1.2.2
Elimina il fattore comune.
Passaggio 4.3.2.1.2.3
Riscrivi l'espressione.
Passaggio 4.3.2.1.3
Eleva alla potenza di .
Passaggio 4.3.2.1.4
Moltiplica per .
Passaggio 4.3.2.2
Sottrai da .
Passaggio 4.3.2.3
La risposta finale è .
Passaggio 4.4
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 4.5
Determina i punti che potrebbero essere punti di flesso.
Passaggio 5
Dividi in intervalli intorno ai punti che potrebbero potenzialmente essere punti di flesso.
Passaggio 6
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Passaggio 6.2.1
Semplifica ciascun termine.
Passaggio 6.2.1.1
Eleva alla potenza di .
Passaggio 6.2.1.2
Moltiplica per .
Passaggio 6.2.1.3
Dividi per .
Passaggio 6.2.2
Sottrai da .
Passaggio 6.2.3
La risposta finale è .
Passaggio 6.3
In corrispondenza di , la derivata seconda è . Poiché il valore è positivo, la derivata seconda è crescente sull'intervallo .
Crescente su perché
Crescente su perché
Passaggio 7
Passaggio 7.1
Sostituisci la variabile con nell'espressione.
Passaggio 7.2
Semplifica il risultato.
Passaggio 7.2.1
Semplifica ciascun termine.
Passaggio 7.2.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 7.2.1.2
Moltiplica per .
Passaggio 7.2.1.3
Dividi per .
Passaggio 7.2.2
Sottrai da .
Passaggio 7.2.3
La risposta finale è .
Passaggio 7.3
Per , la derivata seconda è . Poiché il valore è negativo, la derivata seconda è decrescente nell'intervallo .
Decrescente su perché
Decrescente su perché
Passaggio 8
Passaggio 8.1
Sostituisci la variabile con nell'espressione.
Passaggio 8.2
Semplifica il risultato.
Passaggio 8.2.1
Semplifica ciascun termine.
Passaggio 8.2.1.1
Eleva alla potenza di .
Passaggio 8.2.1.2
Moltiplica per .
Passaggio 8.2.1.3
Dividi per .
Passaggio 8.2.2
Sottrai da .
Passaggio 8.2.3
La risposta finale è .
Passaggio 8.3
In corrispondenza di , la derivata seconda è . Poiché il valore è positivo, la derivata seconda è crescente sull'intervallo .
Crescente su perché
Crescente su perché
Passaggio 9
Un punto di flesso è un punto su una curva in cui la concavità cambia di segno, da più a meno oppure da meno a più. In questo caso i punti di flesso sono .
Passaggio 10