Calcolo Esempi

Trovare i Punti di Flesso y=3/(x^2-9)
Passaggio 1
Scrivi come funzione.
Passaggio 2
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 2.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 2.1.1
Differenzia usando la regola multipla costante.
Tocca per altri passaggi...
Passaggio 2.1.1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.1.2
Riscrivi come .
Passaggio 2.1.2
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 2.1.2.1
Per applicare la regola della catena, imposta come .
Passaggio 2.1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.1.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.1.3
Differenzia.
Tocca per altri passaggi...
Passaggio 2.1.3.1
Moltiplica per .
Passaggio 2.1.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.1.3.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.1.3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.3.5
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 2.1.3.5.1
Somma e .
Passaggio 2.1.3.5.2
Moltiplica per .
Passaggio 2.1.4
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 2.1.5
Raccogli i termini.
Tocca per altri passaggi...
Passaggio 2.1.5.1
e .
Passaggio 2.1.5.2
Sposta il negativo davanti alla frazione.
Passaggio 2.1.5.3
e .
Passaggio 2.1.5.4
Sposta alla sinistra di .
Passaggio 2.2
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola del quoziente, che indica che è dove e .
Passaggio 2.2.3
Differenzia usando la regola di potenza.
Tocca per altri passaggi...
Passaggio 2.2.3.1
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 2.2.3.1.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 2.2.3.1.2
Moltiplica per .
Passaggio 2.2.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.2.3.3
Moltiplica per .
Passaggio 2.2.4
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 2.2.4.1
Per applicare la regola della catena, imposta come .
Passaggio 2.2.4.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.2.4.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.2.5
Semplifica tramite esclusione.
Tocca per altri passaggi...
Passaggio 2.2.5.1
Moltiplica per .
Passaggio 2.2.5.2
Scomponi da .
Tocca per altri passaggi...
Passaggio 2.2.5.2.1
Scomponi da .
Passaggio 2.2.5.2.2
Scomponi da .
Passaggio 2.2.5.2.3
Scomponi da .
Passaggio 2.2.6
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 2.2.6.1
Scomponi da .
Passaggio 2.2.6.2
Elimina il fattore comune.
Passaggio 2.2.6.3
Riscrivi l'espressione.
Passaggio 2.2.7
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2.8
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.2.9
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.10
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 2.2.10.1
Somma e .
Passaggio 2.2.10.2
Moltiplica per .
Passaggio 2.2.11
Eleva alla potenza di .
Passaggio 2.2.12
Eleva alla potenza di .
Passaggio 2.2.13
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 2.2.14
Somma e .
Passaggio 2.2.15
Sottrai da .
Passaggio 2.2.16
e .
Passaggio 2.2.17
Sposta il negativo davanti alla frazione.
Passaggio 2.2.18
Semplifica.
Tocca per altri passaggi...
Passaggio 2.2.18.1
Applica la proprietà distributiva.
Passaggio 2.2.18.2
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 2.2.18.2.1
Moltiplica per .
Passaggio 2.2.18.2.2
Moltiplica per .
Passaggio 2.3
La derivata seconda di rispetto a è .
Passaggio 3
Imposta la derivata seconda pari a , quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 3.1
Imposta la derivata seconda uguale a .
Passaggio 3.2
Poni il numeratore uguale a zero.
Passaggio 3.3
Risolvi l'equazione per .
Tocca per altri passaggi...
Passaggio 3.3.1
Somma a entrambi i lati dell'equazione.
Passaggio 3.3.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 3.3.2.1
Dividi per ciascun termine in .
Passaggio 3.3.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.3.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.3.2.2.1.1
Elimina il fattore comune.
Passaggio 3.3.2.2.1.2
Dividi per .
Passaggio 3.3.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 3.3.2.3.1
Dividi per .
Passaggio 3.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 3.3.4
Semplifica .
Tocca per altri passaggi...
Passaggio 3.3.4.1
Riscrivi come .
Passaggio 3.3.4.2
Riscrivi come .
Passaggio 3.3.4.3
Riscrivi come .
Passaggio 3.3.5
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 3.3.5.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 3.3.5.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 3.3.5.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 4
Non è stato trovato alcun valore in grado di rendere la derivata seconda uguale a .
Nessun punto di flesso