Inserisci un problema...
Calcolo Esempi
Passaggio 1
Scrivi come funzione.
Passaggio 2
Passaggio 2.1
Trova la derivata prima.
Passaggio 2.1.1
Differenzia usando la regola del quoziente, che indica che è dove e .
Passaggio 2.1.2
Differenzia.
Passaggio 2.1.2.1
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.1.2.2
Moltiplica per .
Passaggio 2.1.2.3
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.1.2.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.1.2.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.2.6
Semplifica l'espressione.
Passaggio 2.1.2.6.1
Somma e .
Passaggio 2.1.2.6.2
Moltiplica per .
Passaggio 2.1.3
Eleva alla potenza di .
Passaggio 2.1.4
Eleva alla potenza di .
Passaggio 2.1.5
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 2.1.6
Somma e .
Passaggio 2.1.7
Sottrai da .
Passaggio 2.2
Trova la derivata seconda.
Passaggio 2.2.1
Differenzia usando la regola del quoziente, che indica che è dove e .
Passaggio 2.2.2
Differenzia.
Passaggio 2.2.2.1
Moltiplica gli esponenti in .
Passaggio 2.2.2.1.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 2.2.2.1.2
Moltiplica per .
Passaggio 2.2.2.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2.2.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.2.2.5
Moltiplica per .
Passaggio 2.2.2.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2.7
Somma e .
Passaggio 2.2.3
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 2.2.3.1
Per applicare la regola della catena, imposta come .
Passaggio 2.2.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.2.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.2.4
Differenzia.
Passaggio 2.2.4.1
Moltiplica per .
Passaggio 2.2.4.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2.4.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.2.4.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.4.5
Semplifica l'espressione.
Passaggio 2.2.4.5.1
Somma e .
Passaggio 2.2.4.5.2
Sposta alla sinistra di .
Passaggio 2.2.4.5.3
Moltiplica per .
Passaggio 2.2.5
Semplifica.
Passaggio 2.2.5.1
Applica la proprietà distributiva.
Passaggio 2.2.5.2
Applica la proprietà distributiva.
Passaggio 2.2.5.3
Semplifica il numeratore.
Passaggio 2.2.5.3.1
Semplifica ciascun termine.
Passaggio 2.2.5.3.1.1
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 2.2.5.3.1.2
Riscrivi come .
Passaggio 2.2.5.3.1.3
Espandi usando il metodo FOIL.
Passaggio 2.2.5.3.1.3.1
Applica la proprietà distributiva.
Passaggio 2.2.5.3.1.3.2
Applica la proprietà distributiva.
Passaggio 2.2.5.3.1.3.3
Applica la proprietà distributiva.
Passaggio 2.2.5.3.1.4
Semplifica e combina i termini simili.
Passaggio 2.2.5.3.1.4.1
Semplifica ciascun termine.
Passaggio 2.2.5.3.1.4.1.1
Moltiplica per sommando gli esponenti.
Passaggio 2.2.5.3.1.4.1.1.1
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 2.2.5.3.1.4.1.1.2
Somma e .
Passaggio 2.2.5.3.1.4.1.2
Moltiplica per .
Passaggio 2.2.5.3.1.4.1.3
Moltiplica per .
Passaggio 2.2.5.3.1.4.1.4
Moltiplica per .
Passaggio 2.2.5.3.1.4.2
Somma e .
Passaggio 2.2.5.3.1.5
Applica la proprietà distributiva.
Passaggio 2.2.5.3.1.6
Semplifica.
Passaggio 2.2.5.3.1.6.1
Moltiplica per .
Passaggio 2.2.5.3.1.6.2
Moltiplica per .
Passaggio 2.2.5.3.1.7
Applica la proprietà distributiva.
Passaggio 2.2.5.3.1.8
Semplifica.
Passaggio 2.2.5.3.1.8.1
Moltiplica per sommando gli esponenti.
Passaggio 2.2.5.3.1.8.1.1
Sposta .
Passaggio 2.2.5.3.1.8.1.2
Moltiplica per .
Passaggio 2.2.5.3.1.8.1.2.1
Eleva alla potenza di .
Passaggio 2.2.5.3.1.8.1.2.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 2.2.5.3.1.8.1.3
Somma e .
Passaggio 2.2.5.3.1.8.2
Moltiplica per sommando gli esponenti.
Passaggio 2.2.5.3.1.8.2.1
Sposta .
Passaggio 2.2.5.3.1.8.2.2
Moltiplica per .
Passaggio 2.2.5.3.1.8.2.2.1
Eleva alla potenza di .
Passaggio 2.2.5.3.1.8.2.2.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 2.2.5.3.1.8.2.3
Somma e .
Passaggio 2.2.5.3.1.9
Semplifica ciascun termine.
Passaggio 2.2.5.3.1.9.1
Moltiplica per .
Passaggio 2.2.5.3.1.9.2
Moltiplica per .
Passaggio 2.2.5.3.1.10
Semplifica ciascun termine.
Passaggio 2.2.5.3.1.10.1
Moltiplica per sommando gli esponenti.
Passaggio 2.2.5.3.1.10.1.1
Moltiplica per .
Passaggio 2.2.5.3.1.10.1.1.1
Eleva alla potenza di .
Passaggio 2.2.5.3.1.10.1.1.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 2.2.5.3.1.10.1.2
Somma e .
Passaggio 2.2.5.3.1.10.2
Moltiplica per .
Passaggio 2.2.5.3.1.11
Espandi usando il metodo FOIL.
Passaggio 2.2.5.3.1.11.1
Applica la proprietà distributiva.
Passaggio 2.2.5.3.1.11.2
Applica la proprietà distributiva.
Passaggio 2.2.5.3.1.11.3
Applica la proprietà distributiva.
Passaggio 2.2.5.3.1.12
Semplifica e combina i termini simili.
Passaggio 2.2.5.3.1.12.1
Semplifica ciascun termine.
Passaggio 2.2.5.3.1.12.1.1
Moltiplica per sommando gli esponenti.
Passaggio 2.2.5.3.1.12.1.1.1
Sposta .
Passaggio 2.2.5.3.1.12.1.1.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 2.2.5.3.1.12.1.1.3
Somma e .
Passaggio 2.2.5.3.1.12.1.2
Moltiplica per sommando gli esponenti.
Passaggio 2.2.5.3.1.12.1.2.1
Sposta .
Passaggio 2.2.5.3.1.12.1.2.2
Moltiplica per .
Passaggio 2.2.5.3.1.12.1.2.2.1
Eleva alla potenza di .
Passaggio 2.2.5.3.1.12.1.2.2.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 2.2.5.3.1.12.1.2.3
Somma e .
Passaggio 2.2.5.3.1.12.2
Sottrai da .
Passaggio 2.2.5.3.1.12.3
Somma e .
Passaggio 2.2.5.3.2
Somma e .
Passaggio 2.2.5.3.3
Sottrai da .
Passaggio 2.2.5.4
Semplifica il numeratore.
Passaggio 2.2.5.4.1
Scomponi da .
Passaggio 2.2.5.4.1.1
Scomponi da .
Passaggio 2.2.5.4.1.2
Scomponi da .
Passaggio 2.2.5.4.1.3
Scomponi da .
Passaggio 2.2.5.4.1.4
Scomponi da .
Passaggio 2.2.5.4.1.5
Scomponi da .
Passaggio 2.2.5.4.2
Riscrivi come .
Passaggio 2.2.5.4.3
Sia . Sostituisci tutte le occorrenze di con .
Passaggio 2.2.5.4.4
Scomponi usando il metodo AC.
Passaggio 2.2.5.4.4.1
Considera la forma . Trova una coppia di interi il cui prodotto è e la cui formula è . In questo caso, il cui prodotto è e la cui somma è .
Passaggio 2.2.5.4.4.2
Scrivi la forma fattorizzata utilizzando questi interi.
Passaggio 2.2.5.4.5
Sostituisci tutte le occorrenze di con .
Passaggio 2.2.5.5
Elimina il fattore comune di e .
Passaggio 2.2.5.5.1
Scomponi da .
Passaggio 2.2.5.5.2
Elimina i fattori comuni.
Passaggio 2.2.5.5.2.1
Scomponi da .
Passaggio 2.2.5.5.2.2
Elimina il fattore comune.
Passaggio 2.2.5.5.2.3
Riscrivi l'espressione.
Passaggio 2.3
La derivata seconda di rispetto a è .
Passaggio 3
Passaggio 3.1
Imposta la derivata seconda uguale a .
Passaggio 3.2
Poni il numeratore uguale a zero.
Passaggio 3.3
Risolvi l'equazione per .
Passaggio 3.3.1
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 3.3.2
Imposta uguale a .
Passaggio 3.3.3
Imposta uguale a e risolvi per .
Passaggio 3.3.3.1
Imposta uguale a .
Passaggio 3.3.3.2
Risolvi per .
Passaggio 3.3.3.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 3.3.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 3.3.3.2.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 3.3.3.2.3.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 3.3.3.2.3.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 3.3.3.2.3.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 3.3.4
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 4
Passaggio 4.1
Sostituisci in per trovare il valore di .
Passaggio 4.1.1
Sostituisci la variabile con nell'espressione.
Passaggio 4.1.2
Semplifica il risultato.
Passaggio 4.1.2.1
Semplifica il denominatore.
Passaggio 4.1.2.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 4.1.2.1.2
Somma e .
Passaggio 4.1.2.2
Dividi per .
Passaggio 4.1.2.3
La risposta finale è .
Passaggio 4.2
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 4.3
Sostituisci in per trovare il valore di .
Passaggio 4.3.1
Sostituisci la variabile con nell'espressione.
Passaggio 4.3.2
Semplifica il risultato.
Passaggio 4.3.2.1
Semplifica il denominatore.
Passaggio 4.3.2.1.1
Riscrivi come .
Passaggio 4.3.2.1.1.1
Usa per riscrivere come .
Passaggio 4.3.2.1.1.2
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 4.3.2.1.1.3
e .
Passaggio 4.3.2.1.1.4
Elimina il fattore comune di .
Passaggio 4.3.2.1.1.4.1
Elimina il fattore comune.
Passaggio 4.3.2.1.1.4.2
Riscrivi l'espressione.
Passaggio 4.3.2.1.1.5
Calcola l'esponente.
Passaggio 4.3.2.1.2
Somma e .
Passaggio 4.3.2.2
La risposta finale è .
Passaggio 4.4
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 4.5
Sostituisci in per trovare il valore di .
Passaggio 4.5.1
Sostituisci la variabile con nell'espressione.
Passaggio 4.5.2
Semplifica il risultato.
Passaggio 4.5.2.1
Semplifica il denominatore.
Passaggio 4.5.2.1.1
Applica la regola del prodotto a .
Passaggio 4.5.2.1.2
Eleva alla potenza di .
Passaggio 4.5.2.1.3
Moltiplica per .
Passaggio 4.5.2.1.4
Riscrivi come .
Passaggio 4.5.2.1.4.1
Usa per riscrivere come .
Passaggio 4.5.2.1.4.2
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 4.5.2.1.4.3
e .
Passaggio 4.5.2.1.4.4
Elimina il fattore comune di .
Passaggio 4.5.2.1.4.4.1
Elimina il fattore comune.
Passaggio 4.5.2.1.4.4.2
Riscrivi l'espressione.
Passaggio 4.5.2.1.4.5
Calcola l'esponente.
Passaggio 4.5.2.1.5
Somma e .
Passaggio 4.5.2.2
Sposta il negativo davanti alla frazione.
Passaggio 4.5.2.3
La risposta finale è .
Passaggio 4.6
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 4.7
Determina i punti che potrebbero essere punti di flesso.
Passaggio 5
Dividi in intervalli intorno ai punti che potrebbero potenzialmente essere punti di flesso.
Passaggio 6
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Passaggio 6.2.1
Semplifica il numeratore.
Passaggio 6.2.1.1
Moltiplica per .
Passaggio 6.2.1.2
Moltiplica per .
Passaggio 6.2.2
Semplifica il denominatore.
Passaggio 6.2.2.1
Eleva alla potenza di .
Passaggio 6.2.2.2
Somma e .
Passaggio 6.2.2.3
Eleva alla potenza di .
Passaggio 6.2.3
Dividi per .
Passaggio 6.2.4
La risposta finale è .
Passaggio 6.3
Per , la derivata seconda è . Poiché il valore è negativo, la derivata seconda è decrescente nell'intervallo .
Decrescente su perché
Decrescente su perché
Passaggio 7
Passaggio 7.1
Sostituisci la variabile con nell'espressione.
Passaggio 7.2
Semplifica il risultato.
Passaggio 7.2.1
Semplifica il numeratore.
Passaggio 7.2.1.1
Moltiplica per .
Passaggio 7.2.1.2
Moltiplica per .
Passaggio 7.2.2
Semplifica il denominatore.
Passaggio 7.2.2.1
Eleva alla potenza di .
Passaggio 7.2.2.2
Somma e .
Passaggio 7.2.2.3
Eleva alla potenza di .
Passaggio 7.2.3
Dividi per .
Passaggio 7.2.4
La risposta finale è .
Passaggio 7.3
In corrispondenza di , la derivata seconda è . Poiché il valore è positivo, la derivata seconda è crescente sull'intervallo .
Crescente su perché
Crescente su perché
Passaggio 8
Passaggio 8.1
Sostituisci la variabile con nell'espressione.
Passaggio 8.2
Semplifica il risultato.
Passaggio 8.2.1
Semplifica il numeratore.
Passaggio 8.2.1.1
Moltiplica per .
Passaggio 8.2.1.2
Moltiplica per .
Passaggio 8.2.2
Semplifica il denominatore.
Passaggio 8.2.2.1
Eleva alla potenza di .
Passaggio 8.2.2.2
Somma e .
Passaggio 8.2.2.3
Eleva alla potenza di .
Passaggio 8.2.3
Dividi per .
Passaggio 8.2.4
La risposta finale è .
Passaggio 8.3
Per , la derivata seconda è . Poiché il valore è negativo, la derivata seconda è decrescente nell'intervallo .
Decrescente su perché
Decrescente su perché
Passaggio 9
Passaggio 9.1
Sostituisci la variabile con nell'espressione.
Passaggio 9.2
Semplifica il risultato.
Passaggio 9.2.1
Semplifica il numeratore.
Passaggio 9.2.1.1
Moltiplica per .
Passaggio 9.2.1.2
Moltiplica per .
Passaggio 9.2.2
Semplifica il denominatore.
Passaggio 9.2.2.1
Eleva alla potenza di .
Passaggio 9.2.2.2
Somma e .
Passaggio 9.2.2.3
Eleva alla potenza di .
Passaggio 9.2.3
Dividi per .
Passaggio 9.2.4
La risposta finale è .
Passaggio 9.3
In corrispondenza di , la derivata seconda è . Poiché il valore è positivo, la derivata seconda è crescente sull'intervallo .
Crescente su perché
Crescente su perché
Passaggio 10
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Passaggio 11