Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Differenzia.
Passaggio 1.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.1.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2
Calcola .
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2.3
Moltiplica per .
Passaggio 1.1.3
Calcola .
Passaggio 1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.3.3
Moltiplica per .
Passaggio 1.1.4
Differenzia usando la regola della costante.
Passaggio 1.1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.4.2
Somma e .
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Scomponi il primo membro dell'equazione.
Passaggio 2.2.1
Scomponi da .
Passaggio 2.2.1.1
Scomponi da .
Passaggio 2.2.1.2
Scomponi da .
Passaggio 2.2.1.3
Scomponi da .
Passaggio 2.2.1.4
Scomponi da .
Passaggio 2.2.1.5
Scomponi da .
Passaggio 2.2.2
Scomponi usando il teorema delle radici razionali.
Passaggio 2.2.2.1
Se una funzione polinomiale ha coefficienti interi, allora ogni zero razionale avrà la forma , dove è un fattore della costante e è un fattore del coefficiente direttivo.
Passaggio 2.2.2.2
Trova ciascuna combinazione di . Si tratta delle radici possibili della funzione polinomica.
Passaggio 2.2.2.3
Sostituisci e semplifica l'espressione. In questo caso, l'espressione è uguale a quindi è una radice del polinomio.
Passaggio 2.2.2.3.1
Sostituisci nel polinomio.
Passaggio 2.2.2.3.2
Eleva alla potenza di .
Passaggio 2.2.2.3.3
Eleva alla potenza di .
Passaggio 2.2.2.3.4
Moltiplica per .
Passaggio 2.2.2.3.5
Sottrai da .
Passaggio 2.2.2.3.6
Somma e .
Passaggio 2.2.2.4
Poiché è una radice nota, dividi il polinomio per per trovare il polinomio quoziente. Questo polinomio può poi essere usato per trovare le radici rimanenti.
Passaggio 2.2.2.5
Dividi per .
Passaggio 2.2.2.5.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
+ | - | + | + |
Passaggio 2.2.2.5.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
+ | - | + | + |
Passaggio 2.2.2.5.3
Moltiplica il nuovo quoziente per il divisore.
+ | - | + | + | ||||||||
+ | + |
Passaggio 2.2.2.5.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
+ | - | + | + | ||||||||
- | - |
Passaggio 2.2.2.5.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
+ | - | + | + | ||||||||
- | - | ||||||||||
- |
Passaggio 2.2.2.5.6
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + |
Passaggio 2.2.2.5.7
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + |
Passaggio 2.2.2.5.8
Moltiplica il nuovo quoziente per il divisore.
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
- | - |
Passaggio 2.2.2.5.9
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + |
Passaggio 2.2.2.5.10
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ |
Passaggio 2.2.2.5.11
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + |
Passaggio 2.2.2.5.12
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + |
Passaggio 2.2.2.5.13
Moltiplica il nuovo quoziente per il divisore.
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
+ | + |
Passaggio 2.2.2.5.14
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - |
Passaggio 2.2.2.5.15
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
Passaggio 2.2.2.5.16
Poiché il resto è , la risposta finale è il quoziente.
Passaggio 2.2.2.6
Scrivi come insieme di fattori.
Passaggio 2.2.3
Scomponi.
Passaggio 2.2.3.1
Scomponi usando la regola del quadrato perfetto.
Passaggio 2.2.3.1.1
Riscrivi come .
Passaggio 2.2.3.1.2
Verifica che il termine centrale sia il doppio del prodotto dei numeri elevati alla seconda potenza nel primo e nel terzo termine.
Passaggio 2.2.3.1.3
Riscrivi il polinomio.
Passaggio 2.2.3.1.4
Scomponi usando la regola del trinomio perfetto al quadrato , dove e .
Passaggio 2.2.3.2
Rimuovi le parentesi non necessarie.
Passaggio 2.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 2.4
Imposta uguale a e risolvi per .
Passaggio 2.4.1
Imposta uguale a .
Passaggio 2.4.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.5
Imposta uguale a e risolvi per .
Passaggio 2.5.1
Imposta uguale a .
Passaggio 2.5.2
Risolvi per .
Passaggio 2.5.2.1
Poni uguale a .
Passaggio 2.5.2.2
Somma a entrambi i lati dell'equazione.
Passaggio 2.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 3
Passaggio 3.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 4
Passaggio 4.1
Calcola per .
Passaggio 4.1.1
Sostituisci per .
Passaggio 4.1.2
Semplifica.
Passaggio 4.1.2.1
Semplifica ciascun termine.
Passaggio 4.1.2.1.1
Eleva alla potenza di .
Passaggio 4.1.2.1.2
Eleva alla potenza di .
Passaggio 4.1.2.1.3
Moltiplica per .
Passaggio 4.1.2.1.4
Moltiplica per .
Passaggio 4.1.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 4.1.2.2.1
Somma e .
Passaggio 4.1.2.2.2
Sottrai da .
Passaggio 4.1.2.2.3
Sottrai da .
Passaggio 4.2
Calcola per .
Passaggio 4.2.1
Sostituisci per .
Passaggio 4.2.2
Semplifica.
Passaggio 4.2.2.1
Semplifica ciascun termine.
Passaggio 4.2.2.1.1
Eleva alla potenza di .
Passaggio 4.2.2.1.2
Eleva alla potenza di .
Passaggio 4.2.2.1.3
Moltiplica per .
Passaggio 4.2.2.1.4
Moltiplica per .
Passaggio 4.2.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 4.2.2.2.1
Sottrai da .
Passaggio 4.2.2.2.2
Somma e .
Passaggio 4.2.2.2.3
Sottrai da .
Passaggio 4.3
Elenca tutti i punti.
Passaggio 5