Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Differenzia usando la regola del quoziente secondo cui è dove e .
Passaggio 1.1.2
Differenzia.
Passaggio 1.1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.4
Semplifica l'espressione.
Passaggio 1.1.2.4.1
Somma e .
Passaggio 1.1.2.4.2
Moltiplica per .
Passaggio 1.1.2.5
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2.6
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.7
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.8
Semplifica l'espressione.
Passaggio 1.1.2.8.1
Somma e .
Passaggio 1.1.2.8.2
Moltiplica per .
Passaggio 1.1.3
Semplifica.
Passaggio 1.1.3.1
Applica la proprietà distributiva.
Passaggio 1.1.3.2
Applica la proprietà distributiva.
Passaggio 1.1.3.3
Semplifica il numeratore.
Passaggio 1.1.3.3.1
Semplifica ciascun termine.
Passaggio 1.1.3.3.1.1
Moltiplica per sommando gli esponenti.
Passaggio 1.1.3.3.1.1.1
Sposta .
Passaggio 1.1.3.3.1.1.2
Moltiplica per .
Passaggio 1.1.3.3.1.2
Moltiplica per .
Passaggio 1.1.3.3.2
Sottrai da .
Passaggio 1.1.3.4
Riordina i termini.
Passaggio 1.1.3.5
Scomponi mediante raccoglimento.
Passaggio 1.1.3.5.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Passaggio 1.1.3.5.1.1
Scomponi da .
Passaggio 1.1.3.5.1.2
Riscrivi come più .
Passaggio 1.1.3.5.1.3
Applica la proprietà distributiva.
Passaggio 1.1.3.5.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Passaggio 1.1.3.5.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 1.1.3.5.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 1.1.3.5.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 1.1.3.6
Scomponi da .
Passaggio 1.1.3.7
Riscrivi come .
Passaggio 1.1.3.8
Scomponi da .
Passaggio 1.1.3.9
Riscrivi come .
Passaggio 1.1.3.10
Sposta il negativo davanti alla frazione.
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Poni il numeratore uguale a zero.
Passaggio 2.3
Risolvi l'equazione per .
Passaggio 2.3.1
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 2.3.2
Imposta uguale a e risolvi per .
Passaggio 2.3.2.1
Imposta uguale a .
Passaggio 2.3.2.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.3.3
Imposta uguale a e risolvi per .
Passaggio 2.3.3.1
Imposta uguale a .
Passaggio 2.3.3.2
Somma a entrambi i lati dell'equazione.
Passaggio 2.3.4
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 3
I valori che rendono la derivata uguale a sono .
Passaggio 4
Dividi in intervalli separati intorno ai valori che rendono la derivata o indefinita.
Passaggio 5
Passaggio 5.1
Sostituisci la variabile con nell'espressione.
Passaggio 5.2
Semplifica il risultato.
Passaggio 5.2.1
Semplifica il numeratore.
Passaggio 5.2.1.1
Somma e .
Passaggio 5.2.1.2
Sottrai da .
Passaggio 5.2.2
Semplifica il denominatore.
Passaggio 5.2.2.1
Eleva alla potenza di .
Passaggio 5.2.2.2
Somma e .
Passaggio 5.2.2.3
Eleva alla potenza di .
Passaggio 5.2.3
Moltiplica per .
Passaggio 5.2.4
La risposta finale è .
Passaggio 5.3
In corrispondenza di la derivata è . Poiché il valore è negativo, la funzione è decrescente su .
Decrescente su perché
Decrescente su perché
Passaggio 6
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Passaggio 6.2.1
Semplifica il numeratore.
Passaggio 6.2.1.1
Somma e .
Passaggio 6.2.1.2
Sottrai da .
Passaggio 6.2.2
Semplifica il denominatore.
Passaggio 6.2.2.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 6.2.2.2
Somma e .
Passaggio 6.2.2.3
Eleva alla potenza di .
Passaggio 6.2.3
Riduci l'espressione eliminando i fattori comuni.
Passaggio 6.2.3.1
Moltiplica per .
Passaggio 6.2.3.2
Elimina il fattore comune di e .
Passaggio 6.2.3.2.1
Scomponi da .
Passaggio 6.2.3.2.2
Elimina i fattori comuni.
Passaggio 6.2.3.2.2.1
Scomponi da .
Passaggio 6.2.3.2.2.2
Elimina il fattore comune.
Passaggio 6.2.3.2.2.3
Riscrivi l'espressione.
Passaggio 6.2.3.3
Sposta il negativo davanti alla frazione.
Passaggio 6.2.4
La risposta finale è .
Passaggio 6.3
In corrispondenza di la derivata è . Poiché il valore è positivo, la funzione è crescente su .
Crescente su perché
Crescente su perché
Passaggio 7
Passaggio 7.1
Sostituisci la variabile con nell'espressione.
Passaggio 7.2
Semplifica il risultato.
Passaggio 7.2.1
Semplifica il numeratore.
Passaggio 7.2.1.1
Somma e .
Passaggio 7.2.1.2
Sottrai da .
Passaggio 7.2.2
Semplifica il denominatore.
Passaggio 7.2.2.1
Eleva alla potenza di .
Passaggio 7.2.2.2
Somma e .
Passaggio 7.2.2.3
Eleva alla potenza di .
Passaggio 7.2.3
Moltiplica per .
Passaggio 7.2.4
La risposta finale è .
Passaggio 7.3
In corrispondenza di la derivata è . Poiché il valore è negativo, la funzione è decrescente su .
Decrescente su perché
Decrescente su perché
Passaggio 8
Elenca gli intervalli in cui la funzione è crescente e decrescente.
Crescente su:
Decrescente su:
Passaggio 9