Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2
Calcola .
Passaggio 1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.3
Moltiplica per .
Passaggio 1.3
Calcola .
Passaggio 1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.3
Moltiplica per .
Passaggio 2
Passaggio 2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.2
Dividi per ciascun termine in e semplifica.
Passaggio 2.2.1
Dividi per ciascun termine in .
Passaggio 2.2.2
Semplifica il lato sinistro.
Passaggio 2.2.2.1
Elimina il fattore comune di .
Passaggio 2.2.2.1.1
Elimina il fattore comune.
Passaggio 2.2.2.1.2
Dividi per .
Passaggio 2.2.3
Semplifica il lato destro.
Passaggio 2.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 3
Passaggio 3.1
Sostituisci la variabile con nell'espressione.
Passaggio 3.2
Semplifica il risultato.
Passaggio 3.2.1
Semplifica ciascun termine.
Passaggio 3.2.1.1
Utilizza la regola per la potenza di una potenza per distribuire l'esponente.
Passaggio 3.2.1.1.1
Applica la regola del prodotto a .
Passaggio 3.2.1.1.2
Applica la regola del prodotto a .
Passaggio 3.2.1.2
Eleva alla potenza di .
Passaggio 3.2.1.3
Moltiplica per .
Passaggio 3.2.1.4
Eleva alla potenza di .
Passaggio 3.2.1.5
Eleva alla potenza di .
Passaggio 3.2.1.6
Elimina il fattore comune di .
Passaggio 3.2.1.6.1
Scomponi da .
Passaggio 3.2.1.6.2
Elimina il fattore comune.
Passaggio 3.2.1.6.3
Riscrivi l'espressione.
Passaggio 3.2.1.7
Moltiplica .
Passaggio 3.2.1.7.1
Moltiplica per .
Passaggio 3.2.1.7.2
e .
Passaggio 3.2.1.7.3
Moltiplica per .
Passaggio 3.2.1.8
Sposta il negativo davanti alla frazione.
Passaggio 3.2.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 3.2.3
Scrivi ogni espressione con un comune denominatore di , moltiplicando ciascuna per il fattore appropriato di .
Passaggio 3.2.3.1
Moltiplica per .
Passaggio 3.2.3.2
Moltiplica per .
Passaggio 3.2.4
Riduci i numeratori su un comune denominatore.
Passaggio 3.2.5
Semplifica il numeratore.
Passaggio 3.2.5.1
Moltiplica per .
Passaggio 3.2.5.2
Sottrai da .
Passaggio 3.2.6
Sposta il negativo davanti alla frazione.
Passaggio 3.2.7
La risposta finale è .
Passaggio 4
La linea tangente orizzontale sulla funzione è .
Passaggio 5