Calcolo Esempi

Trovare la Retta Tangente Orizzontale cos(x)
Passaggio 1
La derivata di rispetto a è .
Passaggio 2
Imposta la derivata uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 2.1
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 2.1.1
Dividi per ciascun termine in .
Passaggio 2.1.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.1.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 2.1.2.2
Dividi per .
Passaggio 2.1.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.1.3.1
Dividi per .
Passaggio 2.2
Trova il valore dell'incognita corrispondente all'inverso del seno presente nell'equazione assegnata.
Passaggio 2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.3.1
Il valore esatto di è .
Passaggio 2.4
La funzione del seno è positiva nel primo e nel secondo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel secondo quadrante.
Passaggio 2.5
Sottrai da .
Passaggio 2.6
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 2.6.1
Si può calcolare il periodo della funzione usando .
Passaggio 2.6.2
Sostituisci con nella formula per il periodo.
Passaggio 2.6.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 2.6.4
Dividi per .
Passaggio 2.7
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
Passaggio 2.8
Consolida le risposte.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 3
Risolvi la funzione originale con .
Tocca per altri passaggi...
Passaggio 3.1

Passaggio 3.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 3.2.1
Applica l'angolo di riferimento trovando l'angolo con valori trigonometrici equivalenti nel primo quadrante. Rendi negativa l'espressione, perché il coseno è negativo nel secondo quadrante.
Passaggio 3.2.2
Il valore esatto di è .
Passaggio 3.2.3
Moltiplica per .
Passaggio 3.2.4
La risposta finale è .
Passaggio 4
La linea tangente orizzontale sulla funzione è .
Passaggio 5