Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 1.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.2.2
La derivata di rispetto a è .
Passaggio 1.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3
Differenzia.
Passaggio 1.3.1
Moltiplica per .
Passaggio 1.3.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.3
Moltiplica per .
Passaggio 1.3.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.5
Moltiplica per .
Passaggio 2
Passaggio 2.1
Dividi per ciascun termine in e semplifica.
Passaggio 2.1.1
Dividi per ciascun termine in .
Passaggio 2.1.2
Semplifica il lato sinistro.
Passaggio 2.1.2.1
Elimina il fattore comune di .
Passaggio 2.1.2.1.1
Elimina il fattore comune.
Passaggio 2.1.2.1.2
Dividi per .
Passaggio 2.1.3
Semplifica il lato destro.
Passaggio 2.1.3.1
Dividi per .
Passaggio 2.2
Trova il valore dell'incognita corrispondente all'inverso del seno presente nell'equazione assegnata.
Passaggio 2.3
Semplifica il lato destro.
Passaggio 2.3.1
Il valore esatto di è .
Passaggio 2.4
Dividi per ciascun termine in e semplifica.
Passaggio 2.4.1
Dividi per ciascun termine in .
Passaggio 2.4.2
Semplifica il lato sinistro.
Passaggio 2.4.2.1
Elimina il fattore comune di .
Passaggio 2.4.2.1.1
Elimina il fattore comune.
Passaggio 2.4.2.1.2
Dividi per .
Passaggio 2.4.3
Semplifica il lato destro.
Passaggio 2.4.3.1
Dividi per .
Passaggio 2.5
La funzione del seno è positiva nel primo e nel secondo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel secondo quadrante.
Passaggio 2.6
Risolvi per .
Passaggio 2.6.1
Semplifica.
Passaggio 2.6.1.1
Moltiplica per .
Passaggio 2.6.1.2
Somma e .
Passaggio 2.6.2
Dividi per ciascun termine in e semplifica.
Passaggio 2.6.2.1
Dividi per ciascun termine in .
Passaggio 2.6.2.2
Semplifica il lato sinistro.
Passaggio 2.6.2.2.1
Elimina il fattore comune di .
Passaggio 2.6.2.2.1.1
Elimina il fattore comune.
Passaggio 2.6.2.2.1.2
Dividi per .
Passaggio 2.7
Trova il periodo di .
Passaggio 2.7.1
Si può calcolare il periodo della funzione usando .
Passaggio 2.7.2
Sostituisci con nella formula per il periodo.
Passaggio 2.7.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 2.7.4
Elimina il fattore comune di .
Passaggio 2.7.4.1
Elimina il fattore comune.
Passaggio 2.7.4.2
Dividi per .
Passaggio 2.8
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
Passaggio 2.9
Consolida le risposte.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 3
Passaggio 3.1
Passaggio 3.2
Semplifica il risultato.
Passaggio 3.2.1
Elimina il fattore comune di .
Passaggio 3.2.1.1
Elimina il fattore comune.
Passaggio 3.2.1.2
Riscrivi l'espressione.
Passaggio 3.2.2
Applica l'angolo di riferimento trovando l'angolo con valori trigonometrici equivalenti nel primo quadrante. Rendi negativa l'espressione, perché il coseno è negativo nel secondo quadrante.
Passaggio 3.2.3
Il valore esatto di è .
Passaggio 3.2.4
Moltiplica .
Passaggio 3.2.4.1
Moltiplica per .
Passaggio 3.2.4.2
Moltiplica per .
Passaggio 3.2.5
La risposta finale è .
Passaggio 4
La linea tangente orizzontale sulla funzione è .
Passaggio 5