Calcolo Esempi

Trovare la Retta Tangente Orizzontale 2cos(2x)
Passaggio 1
Trova la derivata.
Tocca per altri passaggi...
Passaggio 1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 1.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.2.2
La derivata di rispetto a è .
Passaggio 1.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3
Differenzia.
Tocca per altri passaggi...
Passaggio 1.3.1
Moltiplica per .
Passaggio 1.3.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.3
Moltiplica per .
Passaggio 1.3.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.5
Moltiplica per .
Passaggio 2
Imposta la derivata uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 2.1
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 2.1.1
Dividi per ciascun termine in .
Passaggio 2.1.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.1.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.1.2.1.1
Elimina il fattore comune.
Passaggio 2.1.2.1.2
Dividi per .
Passaggio 2.1.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.1.3.1
Dividi per .
Passaggio 2.2
Trova il valore dell'incognita corrispondente all'inverso del seno presente nell'equazione assegnata.
Passaggio 2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.3.1
Il valore esatto di è .
Passaggio 2.4
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 2.4.1
Dividi per ciascun termine in .
Passaggio 2.4.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.4.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.4.2.1.1
Elimina il fattore comune.
Passaggio 2.4.2.1.2
Dividi per .
Passaggio 2.4.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.4.3.1
Dividi per .
Passaggio 2.5
La funzione del seno è positiva nel primo e nel secondo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel secondo quadrante.
Passaggio 2.6
Risolvi per .
Tocca per altri passaggi...
Passaggio 2.6.1
Semplifica.
Tocca per altri passaggi...
Passaggio 2.6.1.1
Moltiplica per .
Passaggio 2.6.1.2
Somma e .
Passaggio 2.6.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 2.6.2.1
Dividi per ciascun termine in .
Passaggio 2.6.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.6.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.6.2.2.1.1
Elimina il fattore comune.
Passaggio 2.6.2.2.1.2
Dividi per .
Passaggio 2.7
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 2.7.1
Si può calcolare il periodo della funzione usando .
Passaggio 2.7.2
Sostituisci con nella formula per il periodo.
Passaggio 2.7.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 2.7.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.7.4.1
Elimina il fattore comune.
Passaggio 2.7.4.2
Dividi per .
Passaggio 2.8
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
Passaggio 2.9
Consolida le risposte.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 3
Risolvi la funzione originale con .
Tocca per altri passaggi...
Passaggio 3.1

Passaggio 3.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 3.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.2.1.1
Elimina il fattore comune.
Passaggio 3.2.1.2
Riscrivi l'espressione.
Passaggio 3.2.2
Applica l'angolo di riferimento trovando l'angolo con valori trigonometrici equivalenti nel primo quadrante. Rendi negativa l'espressione, perché il coseno è negativo nel secondo quadrante.
Passaggio 3.2.3
Il valore esatto di è .
Passaggio 3.2.4
Moltiplica .
Tocca per altri passaggi...
Passaggio 3.2.4.1
Moltiplica per .
Passaggio 3.2.4.2
Moltiplica per .
Passaggio 3.2.5
La risposta finale è .
Passaggio 4
La linea tangente orizzontale sulla funzione è .
Passaggio 5