Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2
Calcola .
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.3
e .
Passaggio 1.1.2.4
Moltiplica per .
Passaggio 1.1.2.5
e .
Passaggio 1.1.2.6
Elimina il fattore comune di e .
Passaggio 1.1.2.6.1
Scomponi da .
Passaggio 1.1.2.6.2
Elimina i fattori comuni.
Passaggio 1.1.2.6.2.1
Scomponi da .
Passaggio 1.1.2.6.2.2
Elimina il fattore comune.
Passaggio 1.1.2.6.2.3
Riscrivi l'espressione.
Passaggio 1.1.2.6.2.4
Dividi per .
Passaggio 1.1.3
Calcola .
Passaggio 1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.3.3
Moltiplica per .
Passaggio 1.1.4
Calcola .
Passaggio 1.1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.4.3
Moltiplica per .
Passaggio 1.1.5
Calcola .
Passaggio 1.1.5.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.5.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.5.3
Moltiplica per .
Passaggio 1.1.6
Differenzia usando la regola della costante.
Passaggio 1.1.6.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.6.2
Somma e .
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Scomponi il primo membro dell'equazione.
Passaggio 2.2.1
Scomponi da .
Passaggio 2.2.1.1
Scomponi da .
Passaggio 2.2.1.2
Scomponi da .
Passaggio 2.2.1.3
Scomponi da .
Passaggio 2.2.1.4
Scomponi da .
Passaggio 2.2.1.5
Scomponi da .
Passaggio 2.2.1.6
Scomponi da .
Passaggio 2.2.1.7
Scomponi da .
Passaggio 2.2.2
Scomponi usando il teorema delle radici razionali.
Passaggio 2.2.2.1
Se una funzione polinomiale ha coefficienti interi, allora ogni zero razionale avrà la forma , dove è un fattore della costante e è un fattore del coefficiente direttivo.
Passaggio 2.2.2.2
Trova ciascuna combinazione di . Si tratta delle radici possibili della funzione polinomica.
Passaggio 2.2.2.3
Sostituisci e semplifica l'espressione. In questo caso, l'espressione è uguale a quindi è una radice del polinomio.
Passaggio 2.2.2.3.1
Sostituisci nel polinomio.
Passaggio 2.2.2.3.2
Eleva alla potenza di .
Passaggio 2.2.2.3.3
Moltiplica per .
Passaggio 2.2.2.3.4
Eleva alla potenza di .
Passaggio 2.2.2.3.5
Moltiplica per .
Passaggio 2.2.2.3.6
Sottrai da .
Passaggio 2.2.2.3.7
Moltiplica per .
Passaggio 2.2.2.3.8
Somma e .
Passaggio 2.2.2.3.9
Somma e .
Passaggio 2.2.2.4
Poiché è una radice nota, dividi il polinomio per per trovare il polinomio quoziente. Questo polinomio può poi essere usato per trovare le radici rimanenti.
Passaggio 2.2.2.5
Dividi per .
Passaggio 2.2.2.5.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
+ | - | - | + |
Passaggio 2.2.2.5.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
+ | - | - | + |
Passaggio 2.2.2.5.3
Moltiplica il nuovo quoziente per il divisore.
+ | - | - | + | ||||||||
+ | + |
Passaggio 2.2.2.5.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
+ | - | - | + | ||||||||
- | - |
Passaggio 2.2.2.5.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
+ | - | - | + | ||||||||
- | - | ||||||||||
- |
Passaggio 2.2.2.5.6
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
+ | - | - | + | ||||||||
- | - | ||||||||||
- | - |
Passaggio 2.2.2.5.7
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
- | |||||||||||
+ | - | - | + | ||||||||
- | - | ||||||||||
- | - |
Passaggio 2.2.2.5.8
Moltiplica il nuovo quoziente per il divisore.
- | |||||||||||
+ | - | - | + | ||||||||
- | - | ||||||||||
- | - | ||||||||||
- | - |
Passaggio 2.2.2.5.9
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
- | |||||||||||
+ | - | - | + | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + |
Passaggio 2.2.2.5.10
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
- | |||||||||||
+ | - | - | + | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
+ |
Passaggio 2.2.2.5.11
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
- | |||||||||||
+ | - | - | + | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
+ | + |
Passaggio 2.2.2.5.12
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
- | + | ||||||||||
+ | - | - | + | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
+ | + |
Passaggio 2.2.2.5.13
Moltiplica il nuovo quoziente per il divisore.
- | + | ||||||||||
+ | - | - | + | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
+ | + |
Passaggio 2.2.2.5.14
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
- | + | ||||||||||
+ | - | - | + | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - |
Passaggio 2.2.2.5.15
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
- | + | ||||||||||
+ | - | - | + | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
Passaggio 2.2.2.5.16
Poiché il resto è , la risposta finale è il quoziente.
Passaggio 2.2.2.6
Scrivi come insieme di fattori.
Passaggio 2.2.3
Scomponi.
Passaggio 2.2.3.1
Scomponi mediante raccoglimento.
Passaggio 2.2.3.1.1
Scomponi mediante raccoglimento.
Passaggio 2.2.3.1.1.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Passaggio 2.2.3.1.1.1.1
Scomponi da .
Passaggio 2.2.3.1.1.1.2
Riscrivi come più .
Passaggio 2.2.3.1.1.1.3
Applica la proprietà distributiva.
Passaggio 2.2.3.1.1.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Passaggio 2.2.3.1.1.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 2.2.3.1.1.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 2.2.3.1.1.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 2.2.3.1.2
Rimuovi le parentesi non necessarie.
Passaggio 2.2.3.2
Rimuovi le parentesi non necessarie.
Passaggio 2.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 2.4
Imposta uguale a e risolvi per .
Passaggio 2.4.1
Imposta uguale a .
Passaggio 2.4.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.5
Imposta uguale a e risolvi per .
Passaggio 2.5.1
Imposta uguale a .
Passaggio 2.5.2
Risolvi per .
Passaggio 2.5.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 2.5.2.2
Dividi per ciascun termine in e semplifica.
Passaggio 2.5.2.2.1
Dividi per ciascun termine in .
Passaggio 2.5.2.2.2
Semplifica il lato sinistro.
Passaggio 2.5.2.2.2.1
Elimina il fattore comune di .
Passaggio 2.5.2.2.2.1.1
Elimina il fattore comune.
Passaggio 2.5.2.2.2.1.2
Dividi per .
Passaggio 2.6
Imposta uguale a e risolvi per .
Passaggio 2.6.1
Imposta uguale a .
Passaggio 2.6.2
Somma a entrambi i lati dell'equazione.
Passaggio 2.7
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 3
Passaggio 3.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 4
Passaggio 4.1
Calcola per .
Passaggio 4.1.1
Sostituisci a .
Passaggio 4.1.2
Semplifica.
Passaggio 4.1.2.1
Semplifica ciascun termine.
Passaggio 4.1.2.1.1
Eleva alla potenza di .
Passaggio 4.1.2.1.2
Moltiplica per .
Passaggio 4.1.2.1.3
Eleva alla potenza di .
Passaggio 4.1.2.1.4
Moltiplica per .
Passaggio 4.1.2.1.5
Eleva alla potenza di .
Passaggio 4.1.2.1.6
Moltiplica per .
Passaggio 4.1.2.1.7
Moltiplica per .
Passaggio 4.1.2.2
Trova il comune denominatore.
Passaggio 4.1.2.2.1
Scrivi come una frazione con denominatore .
Passaggio 4.1.2.2.2
Moltiplica per .
Passaggio 4.1.2.2.3
Moltiplica per .
Passaggio 4.1.2.2.4
Scrivi come una frazione con denominatore .
Passaggio 4.1.2.2.5
Moltiplica per .
Passaggio 4.1.2.2.6
Moltiplica per .
Passaggio 4.1.2.2.7
Scrivi come una frazione con denominatore .
Passaggio 4.1.2.2.8
Moltiplica per .
Passaggio 4.1.2.2.9
Moltiplica per .
Passaggio 4.1.2.2.10
Scrivi come una frazione con denominatore .
Passaggio 4.1.2.2.11
Moltiplica per .
Passaggio 4.1.2.2.12
Moltiplica per .
Passaggio 4.1.2.3
Riduci i numeratori su un comune denominatore.
Passaggio 4.1.2.4
Semplifica ciascun termine.
Passaggio 4.1.2.4.1
Moltiplica per .
Passaggio 4.1.2.4.2
Moltiplica per .
Passaggio 4.1.2.4.3
Moltiplica per .
Passaggio 4.1.2.4.4
Moltiplica per .
Passaggio 4.1.2.5
Semplifica l'espressione.
Passaggio 4.1.2.5.1
Somma e .
Passaggio 4.1.2.5.2
Sottrai da .
Passaggio 4.1.2.5.3
Sottrai da .
Passaggio 4.1.2.5.4
Sottrai da .
Passaggio 4.1.2.5.5
Sposta il negativo davanti alla frazione.
Passaggio 4.2
Calcola per .
Passaggio 4.2.1
Sostituisci a .
Passaggio 4.2.2
Semplifica.
Passaggio 4.2.2.1
Semplifica ciascun termine.
Passaggio 4.2.2.1.1
Applica la regola del prodotto a .
Passaggio 4.2.2.1.2
Combina.
Passaggio 4.2.2.1.3
Uno elevato a qualsiasi potenza è uno.
Passaggio 4.2.2.1.4
Eleva alla potenza di .
Passaggio 4.2.2.1.5
Moltiplica per .
Passaggio 4.2.2.1.6
Moltiplica per .
Passaggio 4.2.2.1.7
Elimina il fattore comune di e .
Passaggio 4.2.2.1.7.1
Scomponi da .
Passaggio 4.2.2.1.7.2
Elimina i fattori comuni.
Passaggio 4.2.2.1.7.2.1
Scomponi da .
Passaggio 4.2.2.1.7.2.2
Elimina il fattore comune.
Passaggio 4.2.2.1.7.2.3
Riscrivi l'espressione.
Passaggio 4.2.2.1.8
Applica la regola del prodotto a .
Passaggio 4.2.2.1.9
Uno elevato a qualsiasi potenza è uno.
Passaggio 4.2.2.1.10
Eleva alla potenza di .
Passaggio 4.2.2.1.11
e .
Passaggio 4.2.2.1.12
Sposta il negativo davanti alla frazione.
Passaggio 4.2.2.1.13
Applica la regola del prodotto a .
Passaggio 4.2.2.1.14
Uno elevato a qualsiasi potenza è uno.
Passaggio 4.2.2.1.15
Eleva alla potenza di .
Passaggio 4.2.2.1.16
Elimina il fattore comune di .
Passaggio 4.2.2.1.16.1
Scomponi da .
Passaggio 4.2.2.1.16.2
Scomponi da .
Passaggio 4.2.2.1.16.3
Elimina il fattore comune.
Passaggio 4.2.2.1.16.4
Riscrivi l'espressione.
Passaggio 4.2.2.1.17
e .
Passaggio 4.2.2.1.18
Sposta il negativo davanti alla frazione.
Passaggio 4.2.2.1.19
Elimina il fattore comune di .
Passaggio 4.2.2.1.19.1
Scomponi da .
Passaggio 4.2.2.1.19.2
Elimina il fattore comune.
Passaggio 4.2.2.1.19.3
Riscrivi l'espressione.
Passaggio 4.2.2.2
Trova il comune denominatore.
Passaggio 4.2.2.2.1
Moltiplica per .
Passaggio 4.2.2.2.2
Moltiplica per .
Passaggio 4.2.2.2.3
Moltiplica per .
Passaggio 4.2.2.2.4
Moltiplica per .
Passaggio 4.2.2.2.5
Moltiplica per .
Passaggio 4.2.2.2.6
Moltiplica per .
Passaggio 4.2.2.2.7
Scrivi come una frazione con denominatore .
Passaggio 4.2.2.2.8
Moltiplica per .
Passaggio 4.2.2.2.9
Moltiplica per .
Passaggio 4.2.2.2.10
Scrivi come una frazione con denominatore .
Passaggio 4.2.2.2.11
Moltiplica per .
Passaggio 4.2.2.2.12
Moltiplica per .
Passaggio 4.2.2.2.13
Riordina i fattori di .
Passaggio 4.2.2.2.14
Moltiplica per .
Passaggio 4.2.2.2.15
Riordina i fattori di .
Passaggio 4.2.2.2.16
Moltiplica per .
Passaggio 4.2.2.2.17
Moltiplica per .
Passaggio 4.2.2.3
Riduci i numeratori su un comune denominatore.
Passaggio 4.2.2.4
Semplifica ciascun termine.
Passaggio 4.2.2.4.1
Moltiplica per .
Passaggio 4.2.2.4.2
Moltiplica per .
Passaggio 4.2.2.4.3
Moltiplica per .
Passaggio 4.2.2.4.4
Moltiplica per .
Passaggio 4.2.2.5
Semplifica aggiungendo e sottraendo.
Passaggio 4.2.2.5.1
Sottrai da .
Passaggio 4.2.2.5.2
Sottrai da .
Passaggio 4.2.2.5.3
Somma e .
Passaggio 4.2.2.5.4
Sottrai da .
Passaggio 4.3
Calcola per .
Passaggio 4.3.1
Sostituisci a .
Passaggio 4.3.2
Semplifica.
Passaggio 4.3.2.1
Semplifica ciascun termine.
Passaggio 4.3.2.1.1
Elimina il fattore comune di .
Passaggio 4.3.2.1.1.1
Scomponi da .
Passaggio 4.3.2.1.1.2
Elimina il fattore comune.
Passaggio 4.3.2.1.1.3
Riscrivi l'espressione.
Passaggio 4.3.2.1.2
Eleva alla potenza di .
Passaggio 4.3.2.1.3
Moltiplica per .
Passaggio 4.3.2.1.4
Eleva alla potenza di .
Passaggio 4.3.2.1.5
Moltiplica per .
Passaggio 4.3.2.1.6
Eleva alla potenza di .
Passaggio 4.3.2.1.7
Moltiplica per .
Passaggio 4.3.2.1.8
Moltiplica per .
Passaggio 4.3.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 4.3.2.2.1
Sottrai da .
Passaggio 4.3.2.2.2
Sottrai da .
Passaggio 4.3.2.2.3
Somma e .
Passaggio 4.3.2.2.4
Sottrai da .
Passaggio 4.4
Elenca tutti i punti.
Passaggio 5