Calcolo Esempi

Trovare i Punti Critici f(x)=x^3-3x^2+6x+1
Passaggio 1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1
Differenzia.
Tocca per altri passaggi...
Passaggio 1.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.3
Moltiplica per .
Passaggio 1.1.3
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.3.3
Moltiplica per .
Passaggio 1.1.4
Differenzia usando la regola della costante.
Tocca per altri passaggi...
Passaggio 1.1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.4.2
Somma e .
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Scomponi da .
Tocca per altri passaggi...
Passaggio 2.2.1
Scomponi da .
Passaggio 2.2.2
Scomponi da .
Passaggio 2.2.3
Scomponi da .
Passaggio 2.2.4
Scomponi da .
Passaggio 2.2.5
Scomponi da .
Passaggio 2.3
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 2.3.1
Dividi per ciascun termine in .
Passaggio 2.3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.3.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.3.2.1.1
Elimina il fattore comune.
Passaggio 2.3.2.1.2
Dividi per .
Passaggio 2.3.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.3.3.1
Dividi per .
Passaggio 2.4
Usa la formula quadratica per trovare le soluzioni.
Passaggio 2.5
Sostituisci i valori , e nella formula quadratica e risolvi per .
Passaggio 2.6
Semplifica.
Tocca per altri passaggi...
Passaggio 2.6.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.6.1.1
Eleva alla potenza di .
Passaggio 2.6.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.6.1.2.1
Moltiplica per .
Passaggio 2.6.1.2.2
Moltiplica per .
Passaggio 2.6.1.3
Sottrai da .
Passaggio 2.6.1.4
Riscrivi come .
Passaggio 2.6.1.5
Riscrivi come .
Passaggio 2.6.1.6
Riscrivi come .
Passaggio 2.6.1.7
Riscrivi come .
Passaggio 2.6.1.8
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 2.6.1.9
Sposta alla sinistra di .
Passaggio 2.6.2
Moltiplica per .
Passaggio 2.6.3
Semplifica .
Passaggio 2.7
Semplifica l'espressione per risolvere per la porzione di .
Tocca per altri passaggi...
Passaggio 2.7.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.7.1.1
Eleva alla potenza di .
Passaggio 2.7.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.7.1.2.1
Moltiplica per .
Passaggio 2.7.1.2.2
Moltiplica per .
Passaggio 2.7.1.3
Sottrai da .
Passaggio 2.7.1.4
Riscrivi come .
Passaggio 2.7.1.5
Riscrivi come .
Passaggio 2.7.1.6
Riscrivi come .
Passaggio 2.7.1.7
Riscrivi come .
Passaggio 2.7.1.8
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 2.7.1.9
Sposta alla sinistra di .
Passaggio 2.7.2
Moltiplica per .
Passaggio 2.7.3
Semplifica .
Passaggio 2.7.4
Cambia da a .
Passaggio 2.8
Semplifica l'espressione per risolvere per la porzione di .
Tocca per altri passaggi...
Passaggio 2.8.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.8.1.1
Eleva alla potenza di .
Passaggio 2.8.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.8.1.2.1
Moltiplica per .
Passaggio 2.8.1.2.2
Moltiplica per .
Passaggio 2.8.1.3
Sottrai da .
Passaggio 2.8.1.4
Riscrivi come .
Passaggio 2.8.1.5
Riscrivi come .
Passaggio 2.8.1.6
Riscrivi come .
Passaggio 2.8.1.7
Riscrivi come .
Passaggio 2.8.1.8
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 2.8.1.9
Sposta alla sinistra di .
Passaggio 2.8.2
Moltiplica per .
Passaggio 2.8.3
Semplifica .
Passaggio 2.8.4
Cambia da a .
Passaggio 2.9
La risposta finale è la combinazione di entrambe le soluzioni.
Passaggio 3
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 3.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 4
Non ci sono valori di nel dominio del problema originale per cui la derivata sia o indefinita.
Nessun punto critico trovato