Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 1.1.1.1
Per applicare la regola della catena, imposta come .
Passaggio 1.1.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.1.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.1.3
e .
Passaggio 1.1.4
Riduci i numeratori su un comune denominatore.
Passaggio 1.1.5
Semplifica il numeratore.
Passaggio 1.1.5.1
Moltiplica per .
Passaggio 1.1.5.2
Sottrai da .
Passaggio 1.1.6
Riduci le frazioni.
Passaggio 1.1.6.1
Sposta il negativo davanti alla frazione.
Passaggio 1.1.6.2
e .
Passaggio 1.1.6.3
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 1.1.7
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.8
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.9
Somma e .
Passaggio 1.1.10
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.11
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.12
Riduci le frazioni.
Passaggio 1.1.12.1
Moltiplica per .
Passaggio 1.1.12.2
e .
Passaggio 1.1.12.3
Moltiplica per .
Passaggio 1.1.12.4
e .
Passaggio 1.1.12.5
Sposta il negativo davanti alla frazione.
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Poni il numeratore uguale a zero.
Passaggio 2.3
Dividi per ciascun termine in e semplifica.
Passaggio 2.3.1
Dividi per ciascun termine in .
Passaggio 2.3.2
Semplifica il lato sinistro.
Passaggio 2.3.2.1
Elimina il fattore comune di .
Passaggio 2.3.2.1.1
Elimina il fattore comune.
Passaggio 2.3.2.1.2
Dividi per .
Passaggio 2.3.3
Semplifica il lato destro.
Passaggio 2.3.3.1
Dividi per .
Passaggio 3
Passaggio 3.1
Converti le espressioni con gli esponenti frazionari in radicali.
Passaggio 3.1.1
Applica la regola per riscrivere l'elevazione a potenza come un radicale.
Passaggio 3.1.2
Qualsiasi cosa elevata a è la base stessa.
Passaggio 3.2
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 3.3
Risolvi per .
Passaggio 3.3.1
Per rimuovere il radicale sul lato sinistro dell'equazione, eleva al cubo entrambi i lati dell'equazione.
Passaggio 3.3.2
Semplifica ogni lato dell'equazione.
Passaggio 3.3.2.1
Usa per riscrivere come .
Passaggio 3.3.2.2
Semplifica il lato sinistro.
Passaggio 3.3.2.2.1
Semplifica .
Passaggio 3.3.2.2.1.1
Applica la regola del prodotto a .
Passaggio 3.3.2.2.1.2
Eleva alla potenza di .
Passaggio 3.3.2.2.1.3
Moltiplica gli esponenti in .
Passaggio 3.3.2.2.1.3.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 3.3.2.2.1.3.2
Elimina il fattore comune di .
Passaggio 3.3.2.2.1.3.2.1
Elimina il fattore comune.
Passaggio 3.3.2.2.1.3.2.2
Riscrivi l'espressione.
Passaggio 3.3.2.2.1.4
Semplifica.
Passaggio 3.3.2.2.1.5
Applica la proprietà distributiva.
Passaggio 3.3.2.2.1.6
Moltiplica.
Passaggio 3.3.2.2.1.6.1
Moltiplica per .
Passaggio 3.3.2.2.1.6.2
Moltiplica per .
Passaggio 3.3.2.3
Semplifica il lato destro.
Passaggio 3.3.2.3.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 3.3.3
Risolvi per .
Passaggio 3.3.3.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.3.3.2
Dividi per ciascun termine in e semplifica.
Passaggio 3.3.3.2.1
Dividi per ciascun termine in .
Passaggio 3.3.3.2.2
Semplifica il lato sinistro.
Passaggio 3.3.3.2.2.1
Elimina il fattore comune di .
Passaggio 3.3.3.2.2.1.1
Elimina il fattore comune.
Passaggio 3.3.3.2.2.1.2
Dividi per .
Passaggio 3.3.3.2.3
Semplifica il lato destro.
Passaggio 3.3.3.2.3.1
Dividi per .
Passaggio 3.3.3.3
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 3.3.3.4
Semplifica .
Passaggio 3.3.3.4.1
Riscrivi come .
Passaggio 3.3.3.4.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 3.3.3.5
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 3.3.3.5.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 3.3.3.5.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 3.3.3.5.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 3.4
L'equazione è indefinita dove il denominatore è uguale a , l'argomento di una radice quadrata è minore di o l'argomento di un logaritmo è minore di o uguale a .
Passaggio 4
Passaggio 4.1
Calcola per .
Passaggio 4.1.1
Sostituisci a .
Passaggio 4.1.2
Semplifica.
Passaggio 4.1.2.1
Semplifica ciascun termine.
Passaggio 4.1.2.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 4.1.2.1.2
Moltiplica per .
Passaggio 4.1.2.2
Somma e .
Passaggio 4.2
Calcola per .
Passaggio 4.2.1
Sostituisci a .
Passaggio 4.2.2
Semplifica.
Passaggio 4.2.2.1
Semplifica ciascun termine.
Passaggio 4.2.2.1.1
Eleva alla potenza di .
Passaggio 4.2.2.1.2
Moltiplica per .
Passaggio 4.2.2.2
Riduci l'espressione eliminando i fattori comuni.
Passaggio 4.2.2.2.1
Sottrai da .
Passaggio 4.2.2.2.2
Semplifica l'espressione.
Passaggio 4.2.2.2.2.1
Riscrivi come .
Passaggio 4.2.2.2.2.2
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 4.2.2.2.3
Elimina il fattore comune di .
Passaggio 4.2.2.2.3.1
Elimina il fattore comune.
Passaggio 4.2.2.2.3.2
Riscrivi l'espressione.
Passaggio 4.2.2.2.4
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 4.3
Calcola per .
Passaggio 4.3.1
Sostituisci a .
Passaggio 4.3.2
Semplifica.
Passaggio 4.3.2.1
Semplifica ciascun termine.
Passaggio 4.3.2.1.1
Eleva alla potenza di .
Passaggio 4.3.2.1.2
Moltiplica per .
Passaggio 4.3.2.2
Riduci l'espressione eliminando i fattori comuni.
Passaggio 4.3.2.2.1
Sottrai da .
Passaggio 4.3.2.2.2
Semplifica l'espressione.
Passaggio 4.3.2.2.2.1
Riscrivi come .
Passaggio 4.3.2.2.2.2
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 4.3.2.2.3
Elimina il fattore comune di .
Passaggio 4.3.2.2.3.1
Elimina il fattore comune.
Passaggio 4.3.2.2.3.2
Riscrivi l'espressione.
Passaggio 4.3.2.2.4
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 4.4
Elenca tutti i punti.
Passaggio 5