Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Differenzia usando la regola multipla costante.
Passaggio 1.1.1.1
Sposta il negativo davanti alla frazione.
Passaggio 1.1.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2
Differenzia usando la regola del quoziente secondo cui è dove e .
Passaggio 1.1.3
Differenzia.
Passaggio 1.1.3.1
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.3.2
Moltiplica per .
Passaggio 1.1.3.3
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.3.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.3.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3.6
Semplifica i termini.
Passaggio 1.1.3.6.1
Somma e .
Passaggio 1.1.3.6.2
Moltiplica per .
Passaggio 1.1.3.6.3
Sottrai da .
Passaggio 1.1.3.6.4
Somma e .
Passaggio 1.1.3.6.5
e .
Passaggio 1.1.3.6.6
Semplifica l'espressione.
Passaggio 1.1.3.6.6.1
Moltiplica per .
Passaggio 1.1.3.6.6.2
Sposta il negativo davanti alla frazione.
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Poni il numeratore uguale a zero.
Passaggio 2.3
Poiché , non ci sono soluzioni.
Nessuna soluzione
Nessuna soluzione
Passaggio 3
Passaggio 3.1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 3.2
Risolvi per .
Passaggio 3.2.1
Poni uguale a .
Passaggio 3.2.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 4
Passaggio 4.1
Calcola per .
Passaggio 4.1.1
Sostituisci a .
Passaggio 4.1.2
Semplifica.
Passaggio 4.1.2.1
Somma e .
Passaggio 4.1.2.2
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Indefinito
Indefinito
Indefinito
Passaggio 5
Non ci sono valori di nel dominio del problema originale per cui la derivata sia o indefinita.
Nessun punto critico trovato