Calcolo Esempi

Trovare i Punti Critici f(x)=16/(3(x-6)^(1/3))
Passaggio 1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1
Differenzia usando la regola multipla costante.
Tocca per altri passaggi...
Passaggio 1.1.1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.1.2
Applica le regole di base degli esponenti.
Tocca per altri passaggi...
Passaggio 1.1.1.2.1
Riscrivi come .
Passaggio 1.1.1.2.2
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 1.1.1.2.2.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 1.1.1.2.2.2
e .
Passaggio 1.1.1.2.2.3
Sposta il negativo davanti alla frazione.
Passaggio 1.1.2
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 1.1.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.1.3
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.1.4
e .
Passaggio 1.1.5
Riduci i numeratori su un comune denominatore.
Passaggio 1.1.6
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 1.1.6.1
Moltiplica per .
Passaggio 1.1.6.2
Sottrai da .
Passaggio 1.1.7
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 1.1.7.1
Sposta il negativo davanti alla frazione.
Passaggio 1.1.7.2
e .
Passaggio 1.1.7.3
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 1.1.7.4
Moltiplica per .
Passaggio 1.1.7.5
Moltiplica per .
Passaggio 1.1.8
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.9
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.10
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.11
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 1.1.11.1
Somma e .
Passaggio 1.1.11.2
Moltiplica per .
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Poni il numeratore uguale a zero.
Passaggio 2.3
Poiché , non ci sono soluzioni.
Nessuna soluzione
Nessuna soluzione
Passaggio 3
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 3.1
Applica la regola per riscrivere l'elevazione a potenza come un radicale.
Passaggio 3.2
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 3.3
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.3.1
Per rimuovere il radicale sul lato sinistro dell'equazione, eleva al cubo entrambi i lati dell'equazione.
Passaggio 3.3.2
Semplifica ogni lato dell'equazione.
Tocca per altri passaggi...
Passaggio 3.3.2.1
Usa per riscrivere come .
Passaggio 3.3.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.3.2.2.1
Semplifica .
Tocca per altri passaggi...
Passaggio 3.3.2.2.1.1
Applica la regola del prodotto a .
Passaggio 3.3.2.2.1.2
Eleva alla potenza di .
Passaggio 3.3.2.2.1.3
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 3.3.2.2.1.3.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 3.3.2.2.1.3.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.3.2.2.1.3.2.1
Elimina il fattore comune.
Passaggio 3.3.2.2.1.3.2.2
Riscrivi l'espressione.
Passaggio 3.3.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 3.3.2.3.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 3.3.3
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.3.3.1
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 3.3.3.1.1
Dividi per ciascun termine in .
Passaggio 3.3.3.1.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.3.3.1.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.3.3.1.2.1.1
Elimina il fattore comune.
Passaggio 3.3.3.1.2.1.2
Dividi per .
Passaggio 3.3.3.1.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 3.3.3.1.3.1
Dividi per .
Passaggio 3.3.3.2
Poni uguale a .
Passaggio 3.3.3.3
Somma a entrambi i lati dell'equazione.
Passaggio 4
Risolvi per ciascun valore di dove la derivata è o indefinita.
Tocca per altri passaggi...
Passaggio 4.1
Calcola per .
Tocca per altri passaggi...
Passaggio 4.1.1
Sostituisci a .
Passaggio 4.1.2
Semplifica.
Tocca per altri passaggi...
Passaggio 4.1.2.1
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 4.1.2.1.1
Sottrai da .
Passaggio 4.1.2.1.2
Riscrivi come .
Passaggio 4.1.2.1.3
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 4.1.2.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 4.1.2.2.1
Elimina il fattore comune.
Passaggio 4.1.2.2.2
Riscrivi l'espressione.
Passaggio 4.1.2.3
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 4.1.2.3.1
Calcola l'esponente.
Passaggio 4.1.2.3.2
Moltiplica per .
Passaggio 4.1.2.3.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 4.1.2.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Indefinito
Indefinito
Indefinito
Passaggio 5
Non ci sono valori di nel dominio del problema originale per cui la derivata sia o indefinita.
Nessun punto critico trovato