Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Differenzia usando la regola multipla costante.
Passaggio 1.1.1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.1.2
Applica le regole di base degli esponenti.
Passaggio 1.1.1.2.1
Riscrivi come .
Passaggio 1.1.1.2.2
Moltiplica gli esponenti in .
Passaggio 1.1.1.2.2.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 1.1.1.2.2.2
e .
Passaggio 1.1.1.2.2.3
Sposta il negativo davanti alla frazione.
Passaggio 1.1.2
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 1.1.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.1.3
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.1.4
e .
Passaggio 1.1.5
Riduci i numeratori su un comune denominatore.
Passaggio 1.1.6
Semplifica il numeratore.
Passaggio 1.1.6.1
Moltiplica per .
Passaggio 1.1.6.2
Sottrai da .
Passaggio 1.1.7
Riduci le frazioni.
Passaggio 1.1.7.1
Sposta il negativo davanti alla frazione.
Passaggio 1.1.7.2
e .
Passaggio 1.1.7.3
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 1.1.7.4
Moltiplica per .
Passaggio 1.1.7.5
Moltiplica per .
Passaggio 1.1.8
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.9
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.10
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.11
Semplifica l'espressione.
Passaggio 1.1.11.1
Somma e .
Passaggio 1.1.11.2
Moltiplica per .
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Poni il numeratore uguale a zero.
Passaggio 2.3
Poiché , non ci sono soluzioni.
Nessuna soluzione
Nessuna soluzione
Passaggio 3
Passaggio 3.1
Applica la regola per riscrivere l'elevazione a potenza come un radicale.
Passaggio 3.2
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 3.3
Risolvi per .
Passaggio 3.3.1
Per rimuovere il radicale sul lato sinistro dell'equazione, eleva al cubo entrambi i lati dell'equazione.
Passaggio 3.3.2
Semplifica ogni lato dell'equazione.
Passaggio 3.3.2.1
Usa per riscrivere come .
Passaggio 3.3.2.2
Semplifica il lato sinistro.
Passaggio 3.3.2.2.1
Semplifica .
Passaggio 3.3.2.2.1.1
Applica la regola del prodotto a .
Passaggio 3.3.2.2.1.2
Eleva alla potenza di .
Passaggio 3.3.2.2.1.3
Moltiplica gli esponenti in .
Passaggio 3.3.2.2.1.3.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 3.3.2.2.1.3.2
Elimina il fattore comune di .
Passaggio 3.3.2.2.1.3.2.1
Elimina il fattore comune.
Passaggio 3.3.2.2.1.3.2.2
Riscrivi l'espressione.
Passaggio 3.3.2.3
Semplifica il lato destro.
Passaggio 3.3.2.3.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 3.3.3
Risolvi per .
Passaggio 3.3.3.1
Dividi per ciascun termine in e semplifica.
Passaggio 3.3.3.1.1
Dividi per ciascun termine in .
Passaggio 3.3.3.1.2
Semplifica il lato sinistro.
Passaggio 3.3.3.1.2.1
Elimina il fattore comune di .
Passaggio 3.3.3.1.2.1.1
Elimina il fattore comune.
Passaggio 3.3.3.1.2.1.2
Dividi per .
Passaggio 3.3.3.1.3
Semplifica il lato destro.
Passaggio 3.3.3.1.3.1
Dividi per .
Passaggio 3.3.3.2
Poni uguale a .
Passaggio 3.3.3.3
Somma a entrambi i lati dell'equazione.
Passaggio 4
Passaggio 4.1
Calcola per .
Passaggio 4.1.1
Sostituisci a .
Passaggio 4.1.2
Semplifica.
Passaggio 4.1.2.1
Semplifica l'espressione.
Passaggio 4.1.2.1.1
Sottrai da .
Passaggio 4.1.2.1.2
Riscrivi come .
Passaggio 4.1.2.1.3
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 4.1.2.2
Elimina il fattore comune di .
Passaggio 4.1.2.2.1
Elimina il fattore comune.
Passaggio 4.1.2.2.2
Riscrivi l'espressione.
Passaggio 4.1.2.3
Semplifica l'espressione.
Passaggio 4.1.2.3.1
Calcola l'esponente.
Passaggio 4.1.2.3.2
Moltiplica per .
Passaggio 4.1.2.3.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 4.1.2.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Indefinito
Indefinito
Indefinito
Passaggio 5
Non ci sono valori di nel dominio del problema originale per cui la derivata sia o indefinita.
Nessun punto critico trovato