Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2
Calcola .
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.3
Moltiplica per .
Passaggio 1.1.3
Calcola .
Passaggio 1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.3.3
Moltiplica per .
Passaggio 1.1.4
Differenzia usando la regola della costante.
Passaggio 1.1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.4.2
Somma e .
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.3
Dividi per ciascun termine in e semplifica.
Passaggio 2.3.1
Dividi per ciascun termine in .
Passaggio 2.3.2
Semplifica il lato sinistro.
Passaggio 2.3.2.1
Elimina il fattore comune di .
Passaggio 2.3.2.1.1
Elimina il fattore comune.
Passaggio 2.3.2.1.2
Dividi per .
Passaggio 2.3.3
Semplifica il lato destro.
Passaggio 2.3.3.1
Dividi per .
Passaggio 2.4
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 2.5
Semplifica .
Passaggio 2.5.1
Riscrivi come .
Passaggio 2.5.2
Riscrivi come .
Passaggio 2.5.3
Riscrivi come .
Passaggio 2.6
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 2.6.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 2.6.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 2.6.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 3
Passaggio 3.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 4
Non ci sono valori di nel dominio del problema originale per cui la derivata sia o indefinita.
Nessun punto critico trovato