Calcolo Esempi

Trovare Dove è Indefinita/Discontinua f(x)=(4x+1)/(5cos(x/2)+1)
Passaggio 1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 2
Risolvi per .
Tocca per altri passaggi...
Passaggio 2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 2.2.1
Dividi per ciascun termine in .
Passaggio 2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.2.2.1.1
Elimina il fattore comune.
Passaggio 2.2.2.1.2
Dividi per .
Passaggio 2.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 2.3
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 2.4
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.4.1
Calcola .
Passaggio 2.5
Moltiplica entrambi i lati dell'equazione per .
Passaggio 2.6
Semplifica entrambi i lati dell'equazione.
Tocca per altri passaggi...
Passaggio 2.6.1
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.6.1.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.6.1.1.1
Elimina il fattore comune.
Passaggio 2.6.1.1.2
Riscrivi l'espressione.
Passaggio 2.6.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.6.2.1
Moltiplica per .
Passaggio 2.7
La funzione coseno è negativa nel secondo e nel terzo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel terzo quadrante.
Passaggio 2.8
Risolvi per .
Tocca per altri passaggi...
Passaggio 2.8.1
Moltiplica entrambi i lati dell'equazione per .
Passaggio 2.8.2
Semplifica entrambi i lati dell'equazione.
Tocca per altri passaggi...
Passaggio 2.8.2.1
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.8.2.1.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.8.2.1.1.1
Elimina il fattore comune.
Passaggio 2.8.2.1.1.2
Riscrivi l'espressione.
Passaggio 2.8.2.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.8.2.2.1
Semplifica .
Tocca per altri passaggi...
Passaggio 2.8.2.2.1.1
Moltiplica per .
Passaggio 2.8.2.2.1.2
Sottrai da .
Passaggio 2.8.2.2.1.3
Moltiplica per .
Passaggio 2.9
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 2.9.1
Si può calcolare il periodo della funzione usando .
Passaggio 2.9.2
Sostituisci con nella formula per il periodo.
Passaggio 2.9.3
corrisponde approssimativamente a , che è un valore positivo, perciò elimina il valore assoluto
Passaggio 2.9.4
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 2.9.5
Moltiplica per .
Passaggio 2.10
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 3
L'equazione è indefinita dove il denominatore è uguale a , l'argomento di una radice quadrata è minore di o l'argomento di un logaritmo è minore di o uguale a .
, per qualsiasi intero
Passaggio 4