Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Per qualsiasi , gli asintoti verticali si verificano con , dove è numero intero. usa il periodo di base per , , per trovare gli asintoti verticali per . Imposta l'interno della funzione cosecante, , per uguale a per trovare dove gli asintoti verticali si verificano per .
Passaggio 1.2
Dividi per ciascun termine in e semplifica.
Passaggio 1.2.1
Dividi per ciascun termine in .
Passaggio 1.2.2
Semplifica il lato sinistro.
Passaggio 1.2.2.1
Elimina il fattore comune di .
Passaggio 1.2.2.1.1
Elimina il fattore comune.
Passaggio 1.2.2.1.2
Dividi per .
Passaggio 1.2.3
Semplifica il lato destro.
Passaggio 1.2.3.1
Dividi per .
Passaggio 1.3
Imposta l'interno della funzione cosecante pari a .
Passaggio 1.4
Dividi per ciascun termine in e semplifica.
Passaggio 1.4.1
Dividi per ciascun termine in .
Passaggio 1.4.2
Semplifica il lato sinistro.
Passaggio 1.4.2.1
Elimina il fattore comune di .
Passaggio 1.4.2.1.1
Elimina il fattore comune.
Passaggio 1.4.2.1.2
Dividi per .
Passaggio 1.4.3
Semplifica il lato destro.
Passaggio 1.4.3.1
Elimina il fattore comune di .
Passaggio 1.4.3.1.1
Elimina il fattore comune.
Passaggio 1.4.3.1.2
Dividi per .
Passaggio 1.5
Il periodo di base per si verificherà a , dove e sono asintoti verticali.
Passaggio 1.6
Trova il periodo per determinare dove sono presenti asintoti verticali. Si hanno asintoti verticali ogni mezzo periodo.
Passaggio 1.6.1
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 1.6.2
Elimina il fattore comune di .
Passaggio 1.6.2.1
Elimina il fattore comune.
Passaggio 1.6.2.2
Dividi per .
Passaggio 1.7
Si hanno asintoti verticali di con , e con ogni , dove è un intero. Questo è mezzo periodo.
Passaggio 1.8
La cosecante ha solo asintoti verticali.
Nessun asintoto orizzontale
Nessun asintoto obliquo
Asintoti verticali: dove è un intero
Nessun asintoto orizzontale
Nessun asintoto obliquo
Asintoti verticali: dove è un intero
Passaggio 2
usa la forma per trovare le variabili usate per calcolare l'ampiezza, il periodo, lo sfasamento e la traslazione verticale.
Passaggio 3
Poiché il grafico della funzione non ha un valore massimo o minimo, non possono esserci dei valori per l'ampiezza.
Ampiezza: nessuna
Passaggio 4
Passaggio 4.1
Si può calcolare il periodo della funzione usando .
Passaggio 4.2
Sostituisci con nella formula per il periodo.
Passaggio 4.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 4.4
Elimina il fattore comune di .
Passaggio 4.4.1
Elimina il fattore comune.
Passaggio 4.4.2
Dividi per .
Passaggio 5
Passaggio 5.1
Si può calcolare lo sfasamento della funzione da .
Sfasamento:
Passaggio 5.2
Sostituisci i valori di e nell'equazione per lo sfasamento.
Sfasamento:
Passaggio 5.3
Dividi per .
Sfasamento:
Sfasamento:
Passaggio 6
Elenca le proprietà della funzione trigonometrica.
Ampiezza: nessuna
Periodo:
Sfasamento: nessuno
Traslazione verticale: no
Passaggio 7
Si può rappresentare graficamente la funzione trigonometrica usando l'ampiezza, il periodo, lo sfasamento, la traslazione verticale e i punti.
Asintoti verticali: dove è un intero
Ampiezza: nessuna
Periodo:
Sfasamento: nessuno
Traslazione verticale: no
Passaggio 8