Calcolo Esempi

求导数 - d/d@VAR f(x)=e^(3x) logaritmo naturale di 2x^2-2
Passaggio 1
Differenzia usando la regola del prodotto, che indica che è dove e .
Passaggio 2
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 2.1
Per applicare la regola della catena, imposta come .
Passaggio 2.2
La derivata di rispetto a è .
Passaggio 2.3
Sostituisci tutte le occorrenze di con .
Passaggio 3
Differenzia.
Tocca per altri passaggi...
Passaggio 3.1
e .
Passaggio 3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 3.5
Moltiplica per .
Passaggio 3.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.7
Semplifica i termini.
Tocca per altri passaggi...
Passaggio 3.7.1
Somma e .
Passaggio 3.7.2
e .
Passaggio 3.7.3
e .
Passaggio 3.7.4
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 3.7.4.1
Scomponi da .
Passaggio 3.7.4.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 3.7.4.2.1
Scomponi da .
Passaggio 3.7.4.2.2
Scomponi da .
Passaggio 3.7.4.2.3
Scomponi da .
Passaggio 3.7.4.2.4
Elimina il fattore comune.
Passaggio 3.7.4.2.5
Riscrivi l'espressione.
Passaggio 4
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 4.1
Per applicare la regola della catena, imposta come .
Passaggio 4.2
Differenzia usando la regola esponenziale, che indica che è dove =.
Passaggio 4.3
Sostituisci tutte le occorrenze di con .
Passaggio 5
Differenzia.
Tocca per altri passaggi...
Passaggio 5.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 5.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 5.3
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 5.3.1
Moltiplica per .
Passaggio 5.3.2
Sposta alla sinistra di .
Passaggio 6
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 7
Riduci i numeratori su un comune denominatore.
Passaggio 8
Semplifica.
Tocca per altri passaggi...
Passaggio 8.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 8.1.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 8.1.1.1
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 8.1.1.2
Semplifica spostando all'interno del logaritmo.
Passaggio 8.1.1.3
Applica la proprietà distributiva.
Passaggio 8.1.1.4
Sposta alla sinistra di .
Passaggio 8.1.1.5
Riscrivi come .
Passaggio 8.1.2
Riordina i fattori in .
Passaggio 8.2
Riordina i termini.