Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Calcola il limite del numeratore e il limite del denominatore.
Passaggio 1.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.1.2
Calcola il limite del numeratore.
Passaggio 1.1.2.1
Calcola il limite.
Passaggio 1.1.2.1.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.2.1.2
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 1.1.2.1.3
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.2.1.4
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.2.1.5
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.2.1.6
Sposta il limite all'interno della funzione trigonometrica, poiché il seno è continuo.
Passaggio 1.1.2.1.7
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.2.2
Calcola il limite di inserendo per .
Passaggio 1.1.2.3
Semplifica la risposta.
Passaggio 1.1.2.3.1
Semplifica il denominatore.
Passaggio 1.1.2.3.1.1
Il valore esatto di è .
Passaggio 1.1.2.3.1.2
Somma e .
Passaggio 1.1.2.3.2
Riduci i numeratori su un comune denominatore.
Passaggio 1.1.2.3.3
Sottrai da .
Passaggio 1.1.2.3.4
Dividi per .
Passaggio 1.1.3
Calcola il limite del denominatore.
Passaggio 1.1.3.1
Sposta il limite all'interno della funzione trigonometrica, poiché il seno è continuo.
Passaggio 1.1.3.2
Calcola il limite di inserendo per .
Passaggio 1.1.3.3
Il valore esatto di è .
Passaggio 1.1.3.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 1.3
Trova la derivata del numeratore e del denominatore.
Passaggio 1.3.1
Differenzia numeratore e denominatore.
Passaggio 1.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.3
Calcola .
Passaggio 1.3.3.1
Riscrivi come .
Passaggio 1.3.3.2
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 1.3.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.3.3.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3.3.3
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.3.5
La derivata di rispetto a è .
Passaggio 1.3.3.6
Somma e .
Passaggio 1.3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.5
Semplifica.
Passaggio 1.3.5.1
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 1.3.5.2
Raccogli i termini.
Passaggio 1.3.5.2.1
e .
Passaggio 1.3.5.2.2
Somma e .
Passaggio 1.3.6
La derivata di rispetto a è .
Passaggio 1.4
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 1.5
Moltiplica per .
Passaggio 1.6
Elimina il fattore comune di .
Passaggio 1.6.1
Elimina il fattore comune.
Passaggio 1.6.2
Riscrivi l'espressione.
Passaggio 2
Passaggio 2.1
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2.2
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 2.3
Calcola il limite di che è costante, mentre tende a .
Passaggio 2.4
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 2.5
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 2.6
Calcola il limite di che è costante, mentre tende a .
Passaggio 2.7
Sposta il limite all'interno della funzione trigonometrica, poiché il seno è continuo.
Passaggio 3
Calcola il limite di inserendo per .
Passaggio 4
Passaggio 4.1
Il valore esatto di è .
Passaggio 4.2
Somma e .
Passaggio 4.3
Eleva alla potenza di .
Passaggio 5
Il risultato può essere mostrato in più forme.
Forma esatta:
Forma decimale: