Calcolo Esempi

Trovare i Massimi e i Minimi Locali f(x)=4-x^4y^4
Passaggio 1
Trova la derivata prima della funzione.
Tocca per altri passaggi...
Passaggio 1.1
Differenzia.
Tocca per altri passaggi...
Passaggio 1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.3
Moltiplica per .
Passaggio 1.3
Sottrai da .
Passaggio 2
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3
Moltiplica per .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1.1
Differenzia.
Tocca per altri passaggi...
Passaggio 4.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 4.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.2.3
Moltiplica per .
Passaggio 4.1.3
Sottrai da .
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 5.2.1
Dividi per ciascun termine in .
Passaggio 5.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 5.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 5.2.2.1.1
Elimina il fattore comune.
Passaggio 5.2.2.1.2
Riscrivi l'espressione.
Passaggio 5.2.2.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 5.2.2.2.1
Elimina il fattore comune.
Passaggio 5.2.2.2.2
Dividi per .
Passaggio 5.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 5.2.3.1
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 5.2.3.1.1
Scomponi da .
Passaggio 5.2.3.1.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 5.2.3.1.2.1
Scomponi da .
Passaggio 5.2.3.1.2.2
Elimina il fattore comune.
Passaggio 5.2.3.1.2.3
Riscrivi l'espressione.
Passaggio 5.2.3.2
Dividi per .
Passaggio 5.3
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 5.4
Semplifica .
Tocca per altri passaggi...
Passaggio 5.4.1
Riscrivi come .
Passaggio 5.4.2
Estrai i termini dal radicale, presupponendo numeri reali.
Passaggio 6
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 6.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 9.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 9.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 9.2.1
Moltiplica per .
Passaggio 9.2.2
Moltiplica per .
Passaggio 10
Poiché il test della derivata prima è fallito, non ci sono estremi locali.
Nessun estremo locale
Passaggio 11