Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Differenzia.
Passaggio 1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2
Calcola .
Passaggio 1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 1.2.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.2.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.2.3
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.6
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.7
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.2.8
e .
Passaggio 1.2.9
Riduci i numeratori su un comune denominatore.
Passaggio 1.2.10
Semplifica il numeratore.
Passaggio 1.2.10.1
Moltiplica per .
Passaggio 1.2.10.2
Sottrai da .
Passaggio 1.2.11
Sposta il negativo davanti alla frazione.
Passaggio 1.2.12
Moltiplica per .
Passaggio 1.2.13
Somma e .
Passaggio 1.2.14
e .
Passaggio 1.2.15
e .
Passaggio 1.2.16
Moltiplica per .
Passaggio 1.2.17
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 1.2.18
Scomponi da .
Passaggio 1.2.19
Elimina i fattori comuni.
Passaggio 1.2.19.1
Scomponi da .
Passaggio 1.2.19.2
Elimina il fattore comune.
Passaggio 1.2.19.3
Riscrivi l'espressione.
Passaggio 1.3
Sottrai da .
Passaggio 2
Passaggio 2.1
Differenzia usando la regola multipla costante.
Passaggio 2.1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.2
Applica le regole di base degli esponenti.
Passaggio 2.1.2.1
Riscrivi come .
Passaggio 2.1.2.2
Moltiplica gli esponenti in .
Passaggio 2.1.2.2.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 2.1.2.2.2
Moltiplica .
Passaggio 2.1.2.2.2.1
e .
Passaggio 2.1.2.2.2.2
Moltiplica per .
Passaggio 2.1.2.2.3
Sposta il negativo davanti alla frazione.
Passaggio 2.2
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 2.2.1
Per applicare la regola della catena, imposta come .
Passaggio 2.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.3
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 2.4
e .
Passaggio 2.5
Riduci i numeratori su un comune denominatore.
Passaggio 2.6
Semplifica il numeratore.
Passaggio 2.6.1
Moltiplica per .
Passaggio 2.6.2
Sottrai da .
Passaggio 2.7
Riduci le frazioni.
Passaggio 2.7.1
Sposta il negativo davanti alla frazione.
Passaggio 2.7.2
e .
Passaggio 2.7.3
Semplifica l'espressione.
Passaggio 2.7.3.1
Sposta alla sinistra di .
Passaggio 2.7.3.2
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 2.7.3.3
Moltiplica per .
Passaggio 2.7.4
e .
Passaggio 2.7.5
Moltiplica per .
Passaggio 2.8
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.9
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.10
Somma e .
Passaggio 2.11
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.12
Semplifica i termini.
Passaggio 2.12.1
e .
Passaggio 2.12.2
Moltiplica per .
Passaggio 2.12.3
Scomponi da .
Passaggio 2.13
Elimina i fattori comuni.
Passaggio 2.13.1
Scomponi da .
Passaggio 2.13.2
Elimina il fattore comune.
Passaggio 2.13.3
Riscrivi l'espressione.
Passaggio 2.14
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.15
Semplifica l'espressione.
Passaggio 2.15.1
Moltiplica per .
Passaggio 2.15.2
Riordina i termini.
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Passaggio 4.1
Trova la derivata prima.
Passaggio 4.1.1
Differenzia.
Passaggio 4.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2
Calcola .
Passaggio 4.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2.2
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 4.1.2.2.1
Per applicare la regola della catena, imposta come .
Passaggio 4.1.2.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.1.2.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 4.1.2.3
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.2.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2.6
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.1.2.7
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 4.1.2.8
e .
Passaggio 4.1.2.9
Riduci i numeratori su un comune denominatore.
Passaggio 4.1.2.10
Semplifica il numeratore.
Passaggio 4.1.2.10.1
Moltiplica per .
Passaggio 4.1.2.10.2
Sottrai da .
Passaggio 4.1.2.11
Sposta il negativo davanti alla frazione.
Passaggio 4.1.2.12
Moltiplica per .
Passaggio 4.1.2.13
Somma e .
Passaggio 4.1.2.14
e .
Passaggio 4.1.2.15
e .
Passaggio 4.1.2.16
Moltiplica per .
Passaggio 4.1.2.17
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 4.1.2.18
Scomponi da .
Passaggio 4.1.2.19
Elimina i fattori comuni.
Passaggio 4.1.2.19.1
Scomponi da .
Passaggio 4.1.2.19.2
Elimina il fattore comune.
Passaggio 4.1.2.19.3
Riscrivi l'espressione.
Passaggio 4.1.3
Sottrai da .
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Poni il numeratore uguale a zero.
Passaggio 5.3
Poiché , non ci sono soluzioni.
Nessuna soluzione
Nessuna soluzione
Passaggio 6
Passaggio 6.1
Applica la regola per riscrivere l'elevazione a potenza come un radicale.
Passaggio 6.2
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 6.3
Risolvi per .
Passaggio 6.3.1
Per rimuovere il radicale sul lato sinistro dell'equazione, eleva entrambi i lati dell'equazione alla potenza.
Passaggio 6.3.2
Semplifica ogni lato dell'equazione.
Passaggio 6.3.2.1
Usa per riscrivere come .
Passaggio 6.3.2.2
Semplifica il lato sinistro.
Passaggio 6.3.2.2.1
Moltiplica gli esponenti in .
Passaggio 6.3.2.2.1.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 6.3.2.2.1.2
Elimina il fattore comune di .
Passaggio 6.3.2.2.1.2.1
Elimina il fattore comune.
Passaggio 6.3.2.2.1.2.2
Riscrivi l'espressione.
Passaggio 6.3.2.3
Semplifica il lato destro.
Passaggio 6.3.2.3.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 6.3.3
Risolvi per .
Passaggio 6.3.3.1
Poni uguale a .
Passaggio 6.3.3.2
Risolvi per .
Passaggio 6.3.3.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 6.3.3.2.2
Dividi per ciascun termine in e semplifica.
Passaggio 6.3.3.2.2.1
Dividi per ciascun termine in .
Passaggio 6.3.3.2.2.2
Semplifica il lato sinistro.
Passaggio 6.3.3.2.2.2.1
Elimina il fattore comune di .
Passaggio 6.3.3.2.2.2.1.1
Elimina il fattore comune.
Passaggio 6.3.3.2.2.2.1.2
Dividi per .
Passaggio 6.3.3.2.2.3
Semplifica il lato destro.
Passaggio 6.3.3.2.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Passaggio 9.1
Elimina il fattore comune di .
Passaggio 9.1.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 9.1.2
Elimina il fattore comune.
Passaggio 9.1.3
Riscrivi l'espressione.
Passaggio 9.2
Semplifica l'espressione.
Passaggio 9.2.1
Somma e .
Passaggio 9.2.2
Riscrivi come .
Passaggio 9.2.3
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 9.3
Elimina il fattore comune di .
Passaggio 9.3.1
Elimina il fattore comune.
Passaggio 9.3.2
Riscrivi l'espressione.
Passaggio 9.4
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 9.5
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Indefinito
Passaggio 10
Passaggio 10.1
Dividi in intervalli separati intorno ai valori che rendono la derivata prima o indefinita.
Passaggio 10.2
Sostituisci qualsiasi numero, come ad esempio , dall'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Passaggio 10.2.1
Sostituisci la variabile con nell'espressione.
Passaggio 10.2.2
Semplifica il risultato.
Passaggio 10.2.2.1
Semplifica il denominatore.
Passaggio 10.2.2.1.1
Moltiplica per .
Passaggio 10.2.2.1.2
Sottrai da .
Passaggio 10.2.2.2
La risposta finale è .
Passaggio 10.3
Sostituisci qualsiasi numero, come ad esempio , dall'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Passaggio 10.3.1
Sostituisci la variabile con nell'espressione.
Passaggio 10.3.2
Semplifica il risultato.
Passaggio 10.3.2.1
Semplifica il denominatore.
Passaggio 10.3.2.1.1
Moltiplica per .
Passaggio 10.3.2.1.2
Somma e .
Passaggio 10.3.2.2
La risposta finale è .
Passaggio 10.4
Dato che la derivata prima ha cambiato segno da positivo a negativo intorno a , allora è un massimo locale.
è un massimo locale
è un massimo locale
Passaggio 11