Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Riscrivi come .
Passaggio 1.2
Espandi usando il metodo FOIL.
Passaggio 1.2.1
Applica la proprietà distributiva.
Passaggio 1.2.2
Applica la proprietà distributiva.
Passaggio 1.2.3
Applica la proprietà distributiva.
Passaggio 1.3
Semplifica e combina i termini simili.
Passaggio 1.3.1
Semplifica ciascun termine.
Passaggio 1.3.1.1
Moltiplica per .
Passaggio 1.3.1.2
Sposta alla sinistra di .
Passaggio 1.3.1.3
Moltiplica per .
Passaggio 1.3.2
Sottrai da .
Passaggio 1.4
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 1.5
Differenzia.
Passaggio 1.5.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.5.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.5.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.5.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.5.5
Moltiplica per .
Passaggio 1.5.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.5.7
Somma e .
Passaggio 1.5.8
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.5.9
Sposta alla sinistra di .
Passaggio 1.6
Semplifica.
Passaggio 1.6.1
Applica la proprietà distributiva.
Passaggio 1.6.2
Applica la proprietà distributiva.
Passaggio 1.6.3
Applica la proprietà distributiva.
Passaggio 1.6.4
Raccogli i termini.
Passaggio 1.6.4.1
Moltiplica per sommando gli esponenti.
Passaggio 1.6.4.1.1
Sposta .
Passaggio 1.6.4.1.2
Moltiplica per .
Passaggio 1.6.4.1.2.1
Eleva alla potenza di .
Passaggio 1.6.4.1.2.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 1.6.4.1.3
Somma e .
Passaggio 1.6.4.2
Sposta alla sinistra di .
Passaggio 1.6.4.3
Sposta alla sinistra di .
Passaggio 1.6.4.4
Moltiplica per sommando gli esponenti.
Passaggio 1.6.4.4.1
Sposta .
Passaggio 1.6.4.4.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 1.6.4.4.3
Somma e .
Passaggio 1.6.4.5
Moltiplica per .
Passaggio 1.6.4.6
Moltiplica per sommando gli esponenti.
Passaggio 1.6.4.6.1
Sposta .
Passaggio 1.6.4.6.2
Moltiplica per .
Passaggio 1.6.4.6.2.1
Eleva alla potenza di .
Passaggio 1.6.4.6.2.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 1.6.4.6.3
Somma e .
Passaggio 1.6.4.7
Moltiplica per .
Passaggio 1.6.4.8
Somma e .
Passaggio 1.6.4.9
Sottrai da .
Passaggio 2
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.3
Moltiplica per .
Passaggio 2.3
Calcola .
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.3
Moltiplica per .
Passaggio 2.4
Calcola .
Passaggio 2.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.4.3
Moltiplica per .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Passaggio 4.1
Trova la derivata prima.
Passaggio 4.1.1
Riscrivi come .
Passaggio 4.1.2
Espandi usando il metodo FOIL.
Passaggio 4.1.2.1
Applica la proprietà distributiva.
Passaggio 4.1.2.2
Applica la proprietà distributiva.
Passaggio 4.1.2.3
Applica la proprietà distributiva.
Passaggio 4.1.3
Semplifica e combina i termini simili.
Passaggio 4.1.3.1
Semplifica ciascun termine.
Passaggio 4.1.3.1.1
Moltiplica per .
Passaggio 4.1.3.1.2
Sposta alla sinistra di .
Passaggio 4.1.3.1.3
Moltiplica per .
Passaggio 4.1.3.2
Sottrai da .
Passaggio 4.1.4
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 4.1.5
Differenzia.
Passaggio 4.1.5.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.5.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.5.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.5.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.5.5
Moltiplica per .
Passaggio 4.1.5.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.5.7
Somma e .
Passaggio 4.1.5.8
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.5.9
Sposta alla sinistra di .
Passaggio 4.1.6
Semplifica.
Passaggio 4.1.6.1
Applica la proprietà distributiva.
Passaggio 4.1.6.2
Applica la proprietà distributiva.
Passaggio 4.1.6.3
Applica la proprietà distributiva.
Passaggio 4.1.6.4
Raccogli i termini.
Passaggio 4.1.6.4.1
Moltiplica per sommando gli esponenti.
Passaggio 4.1.6.4.1.1
Sposta .
Passaggio 4.1.6.4.1.2
Moltiplica per .
Passaggio 4.1.6.4.1.2.1
Eleva alla potenza di .
Passaggio 4.1.6.4.1.2.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 4.1.6.4.1.3
Somma e .
Passaggio 4.1.6.4.2
Sposta alla sinistra di .
Passaggio 4.1.6.4.3
Sposta alla sinistra di .
Passaggio 4.1.6.4.4
Moltiplica per sommando gli esponenti.
Passaggio 4.1.6.4.4.1
Sposta .
Passaggio 4.1.6.4.4.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 4.1.6.4.4.3
Somma e .
Passaggio 4.1.6.4.5
Moltiplica per .
Passaggio 4.1.6.4.6
Moltiplica per sommando gli esponenti.
Passaggio 4.1.6.4.6.1
Sposta .
Passaggio 4.1.6.4.6.2
Moltiplica per .
Passaggio 4.1.6.4.6.2.1
Eleva alla potenza di .
Passaggio 4.1.6.4.6.2.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 4.1.6.4.6.3
Somma e .
Passaggio 4.1.6.4.7
Moltiplica per .
Passaggio 4.1.6.4.8
Somma e .
Passaggio 4.1.6.4.9
Sottrai da .
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Scomponi il primo membro dell'equazione.
Passaggio 5.2.1
Scomponi da .
Passaggio 5.2.1.1
Scomponi da .
Passaggio 5.2.1.2
Scomponi da .
Passaggio 5.2.1.3
Scomponi da .
Passaggio 5.2.1.4
Scomponi da .
Passaggio 5.2.1.5
Scomponi da .
Passaggio 5.2.2
Scomponi.
Passaggio 5.2.2.1
Scomponi usando il metodo AC.
Passaggio 5.2.2.1.1
Considera la forma . Trova una coppia di interi il cui prodotto è e la cui formula è . In questo caso, il cui prodotto è e la cui somma è .
Passaggio 5.2.2.1.2
Scrivi la forma fattorizzata usando questi interi.
Passaggio 5.2.2.2
Rimuovi le parentesi non necessarie.
Passaggio 5.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 5.4
Imposta uguale a e risolvi per .
Passaggio 5.4.1
Imposta uguale a .
Passaggio 5.4.2
Risolvi per .
Passaggio 5.4.2.1
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 5.4.2.2
Semplifica .
Passaggio 5.4.2.2.1
Riscrivi come .
Passaggio 5.4.2.2.2
Estrai i termini dal radicale, presupponendo numeri reali.
Passaggio 5.5
Imposta uguale a e risolvi per .
Passaggio 5.5.1
Imposta uguale a .
Passaggio 5.5.2
Somma a entrambi i lati dell'equazione.
Passaggio 5.6
Imposta uguale a e risolvi per .
Passaggio 5.6.1
Imposta uguale a .
Passaggio 5.6.2
Somma a entrambi i lati dell'equazione.
Passaggio 5.7
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 6
Passaggio 6.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Passaggio 9.1
Semplifica ciascun termine.
Passaggio 9.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 9.1.2
Moltiplica per .
Passaggio 9.1.3
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 9.1.4
Moltiplica per .
Passaggio 9.1.5
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 9.1.6
Moltiplica per .
Passaggio 9.2
Semplifica aggiungendo i numeri.
Passaggio 9.2.1
Somma e .
Passaggio 9.2.2
Somma e .
Passaggio 10
Passaggio 10.1
Dividi in intervalli separati intorno ai valori che rendono la derivata prima o indefinita.
Passaggio 10.2
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Passaggio 10.2.1
Sostituisci la variabile con nell'espressione.
Passaggio 10.2.2
Semplifica il risultato.
Passaggio 10.2.2.1
Semplifica ciascun termine.
Passaggio 10.2.2.1.1
Eleva alla potenza di .
Passaggio 10.2.2.1.2
Moltiplica per .
Passaggio 10.2.2.1.3
Eleva alla potenza di .
Passaggio 10.2.2.1.4
Moltiplica per .
Passaggio 10.2.2.1.5
Eleva alla potenza di .
Passaggio 10.2.2.1.6
Moltiplica per .
Passaggio 10.2.2.2
Semplifica sottraendo i numeri.
Passaggio 10.2.2.2.1
Sottrai da .
Passaggio 10.2.2.2.2
Sottrai da .
Passaggio 10.2.2.3
La risposta finale è .
Passaggio 10.3
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Passaggio 10.3.1
Sostituisci la variabile con nell'espressione.
Passaggio 10.3.2
Semplifica il risultato.
Passaggio 10.3.2.1
Semplifica ciascun termine.
Passaggio 10.3.2.1.1
Eleva alla potenza di .
Passaggio 10.3.2.1.2
Moltiplica per .
Passaggio 10.3.2.1.3
Eleva alla potenza di .
Passaggio 10.3.2.1.4
Moltiplica per .
Passaggio 10.3.2.1.5
Eleva alla potenza di .
Passaggio 10.3.2.1.6
Moltiplica per .
Passaggio 10.3.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 10.3.2.2.1
Sottrai da .
Passaggio 10.3.2.2.2
Somma e .
Passaggio 10.3.2.3
La risposta finale è .
Passaggio 10.4
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Passaggio 10.4.1
Sostituisci la variabile con nell'espressione.
Passaggio 10.4.2
Semplifica il risultato.
Passaggio 10.4.2.1
Semplifica ciascun termine.
Passaggio 10.4.2.1.1
Eleva alla potenza di .
Passaggio 10.4.2.1.2
Moltiplica per .
Passaggio 10.4.2.1.3
Eleva alla potenza di .
Passaggio 10.4.2.1.4
Moltiplica per .
Passaggio 10.4.2.1.5
Eleva alla potenza di .
Passaggio 10.4.2.1.6
Moltiplica per .
Passaggio 10.4.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 10.4.2.2.1
Sottrai da .
Passaggio 10.4.2.2.2
Somma e .
Passaggio 10.4.2.3
La risposta finale è .
Passaggio 10.5
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Passaggio 10.5.1
Sostituisci la variabile con nell'espressione.
Passaggio 10.5.2
Semplifica il risultato.
Passaggio 10.5.2.1
Semplifica ciascun termine.
Passaggio 10.5.2.1.1
Eleva alla potenza di .
Passaggio 10.5.2.1.2
Moltiplica per .
Passaggio 10.5.2.1.3
Eleva alla potenza di .
Passaggio 10.5.2.1.4
Moltiplica per .
Passaggio 10.5.2.1.5
Eleva alla potenza di .
Passaggio 10.5.2.1.6
Moltiplica per .
Passaggio 10.5.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 10.5.2.2.1
Sottrai da .
Passaggio 10.5.2.2.2
Somma e .
Passaggio 10.5.2.3
La risposta finale è .
Passaggio 10.6
Dato che la derivata prima ha cambiato segno da negativo a positivo intorno a , allora è un minimo locale.
è un minimo locale
Passaggio 10.7
Dato che la derivata prima ha cambiato segno da positivo a negativo intorno a , allora è un massimo locale.
è un massimo locale
Passaggio 10.8
Dato che la derivata prima ha cambiato segno da negativo a positivo intorno a , allora è un minimo locale.
è un minimo locale
Passaggio 10.9
Questi sono gli estremi locali per .
è un minimo locale
è un massimo locale
è un minimo locale
è un minimo locale
è un massimo locale
è un minimo locale
Passaggio 11