Calcolo Esempi

Trovare i Massimi e i Minimi Locali f(x)=1-x^(2/3)
Passaggio 1
Trova la derivata prima della funzione.
Tocca per altri passaggi...
Passaggio 1.1
Differenzia.
Tocca per altri passaggi...
Passaggio 1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.3
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.2.4
e .
Passaggio 1.2.5
Riduci i numeratori su un comune denominatore.
Passaggio 1.2.6
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 1.2.6.1
Moltiplica per .
Passaggio 1.2.6.2
Sottrai da .
Passaggio 1.2.7
Sposta il negativo davanti alla frazione.
Passaggio 1.2.8
e .
Passaggio 1.2.9
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 1.3
Sottrai da .
Passaggio 2
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2
Applica le regole di base degli esponenti.
Tocca per altri passaggi...
Passaggio 2.2.1
Riscrivi come .
Passaggio 2.2.2
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 2.2.2.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 2.2.2.2
e .
Passaggio 2.2.2.3
Sposta il negativo davanti alla frazione.
Passaggio 2.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.4
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 2.5
e .
Passaggio 2.6
Riduci i numeratori su un comune denominatore.
Passaggio 2.7
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.7.1
Moltiplica per .
Passaggio 2.7.2
Sottrai da .
Passaggio 2.8
Sposta il negativo davanti alla frazione.
Passaggio 2.9
e .
Passaggio 2.10
Moltiplica.
Tocca per altri passaggi...
Passaggio 2.10.1
Moltiplica per .
Passaggio 2.10.2
Moltiplica per .
Passaggio 2.11
Moltiplica per .
Passaggio 2.12
Moltiplica.
Tocca per altri passaggi...
Passaggio 2.12.1
Moltiplica per .
Passaggio 2.12.2
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1.1
Differenzia.
Tocca per altri passaggi...
Passaggio 4.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 4.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.1.2.3
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 4.1.2.4
e .
Passaggio 4.1.2.5
Riduci i numeratori su un comune denominatore.
Passaggio 4.1.2.6
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 4.1.2.6.1
Moltiplica per .
Passaggio 4.1.2.6.2
Sottrai da .
Passaggio 4.1.2.7
Sposta il negativo davanti alla frazione.
Passaggio 4.1.2.8
e .
Passaggio 4.1.2.9
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 4.1.3
Sottrai da .
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Poni il numeratore uguale a zero.
Passaggio 5.3
Poiché , non ci sono soluzioni.
Nessuna soluzione
Nessuna soluzione
Passaggio 6
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 6.1
Converti le espressioni con gli esponenti frazionari in radicali.
Tocca per altri passaggi...
Passaggio 6.1.1
Applica la regola per riscrivere l'elevazione a potenza come un radicale.
Passaggio 6.1.2
Qualsiasi cosa elevata a è la base stessa.
Passaggio 6.2
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 6.3
Risolvi per .
Tocca per altri passaggi...
Passaggio 6.3.1
Per rimuovere il radicale sul lato sinistro dell'equazione, eleva al cubo entrambi i lati dell'equazione.
Passaggio 6.3.2
Semplifica ogni lato dell'equazione.
Tocca per altri passaggi...
Passaggio 6.3.2.1
Usa per riscrivere come .
Passaggio 6.3.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 6.3.2.2.1
Semplifica .
Tocca per altri passaggi...
Passaggio 6.3.2.2.1.1
Applica la regola del prodotto a .
Passaggio 6.3.2.2.1.2
Eleva alla potenza di .
Passaggio 6.3.2.2.1.3
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 6.3.2.2.1.3.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 6.3.2.2.1.3.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.3.2.2.1.3.2.1
Elimina il fattore comune.
Passaggio 6.3.2.2.1.3.2.2
Riscrivi l'espressione.
Passaggio 6.3.2.2.1.4
Semplifica.
Passaggio 6.3.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 6.3.2.3.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 6.3.3
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 6.3.3.1
Dividi per ciascun termine in .
Passaggio 6.3.3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 6.3.3.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.3.3.2.1.1
Elimina il fattore comune.
Passaggio 6.3.3.2.1.2
Dividi per .
Passaggio 6.3.3.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 6.3.3.3.1
Dividi per .
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 9.1
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 9.1.1
Riscrivi come .
Passaggio 9.1.2
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 9.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 9.2.1
Elimina il fattore comune.
Passaggio 9.2.2
Riscrivi l'espressione.
Passaggio 9.3
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 9.3.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 9.3.2
Moltiplica per .
Passaggio 9.3.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 9.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Indefinito
Passaggio 10
Poiché c'è almeno un punto con una derivata seconda o indefinita, applica il test della derivata prima.
Tocca per altri passaggi...
Passaggio 10.1
Dividi in intervalli separati intorno ai valori che rendono la derivata prima o indefinita.
Passaggio 10.2
Sostituisci qualsiasi numero, come ad esempio , dall'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Tocca per altri passaggi...
Passaggio 10.2.1
Sostituisci la variabile con nell'espressione.
Passaggio 10.2.2
La risposta finale è .
Passaggio 10.3
Sostituisci qualsiasi numero, come ad esempio , dall'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Tocca per altri passaggi...
Passaggio 10.3.1
Sostituisci la variabile con nell'espressione.
Passaggio 10.3.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 10.3.2.1
Sposta al numeratore usando la regola dell'esponente negativo .
Passaggio 10.3.2.2
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 10.3.2.2.1
Moltiplica per .
Tocca per altri passaggi...
Passaggio 10.3.2.2.1.1
Eleva alla potenza di .
Passaggio 10.3.2.2.1.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 10.3.2.2.2
Scrivi come una frazione con un comune denominatore.
Passaggio 10.3.2.2.3
Riduci i numeratori su un comune denominatore.
Passaggio 10.3.2.2.4
Sottrai da .
Passaggio 10.3.2.3
La risposta finale è .
Passaggio 10.4
Dato che la derivata prima ha cambiato segno da positivo a negativo intorno a , allora è un massimo locale.
è un massimo locale
è un massimo locale
Passaggio 11