Calcolo Esempi

Trovare i Massimi e i Minimi Locali f(x)=xe^(8x)
Passaggio 1
Trova la derivata prima della funzione.
Tocca per altri passaggi...
Passaggio 1.1
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 1.2
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 1.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.2.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 1.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3
Differenzia.
Tocca per altri passaggi...
Passaggio 1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.3
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 1.3.3.1
Moltiplica per .
Passaggio 1.3.3.2
Sposta alla sinistra di .
Passaggio 1.3.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.5
Moltiplica per .
Passaggio 1.4
Semplifica.
Tocca per altri passaggi...
Passaggio 1.4.1
Riordina i termini.
Passaggio 1.4.2
Riordina i fattori in .
Passaggio 2
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Tocca per altri passaggi...
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 2.2.3
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 2.2.3.1
Per applicare la regola della catena, imposta come .
Passaggio 2.2.3.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 2.2.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.2.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.5
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.6
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.7
Moltiplica per .
Passaggio 2.2.8
Sposta alla sinistra di .
Passaggio 2.2.9
Moltiplica per .
Passaggio 2.3
Calcola .
Tocca per altri passaggi...
Passaggio 2.3.1
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 2.3.1.1
Per applicare la regola della catena, imposta come .
Passaggio 2.3.1.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 2.3.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.3.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.4
Moltiplica per .
Passaggio 2.3.5
Sposta alla sinistra di .
Passaggio 2.4
Semplifica.
Tocca per altri passaggi...
Passaggio 2.4.1
Applica la proprietà distributiva.
Passaggio 2.4.2
Raccogli i termini.
Tocca per altri passaggi...
Passaggio 2.4.2.1
Moltiplica per .
Passaggio 2.4.2.2
Somma e .
Passaggio 2.4.3
Riordina i termini.
Passaggio 2.4.4
Riordina i fattori in .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1.1
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 4.1.2
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 4.1.2.1
Per applicare la regola della catena, imposta come .
Passaggio 4.1.2.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 4.1.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 4.1.3
Differenzia.
Tocca per altri passaggi...
Passaggio 4.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.3.3
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 4.1.3.3.1
Moltiplica per .
Passaggio 4.1.3.3.2
Sposta alla sinistra di .
Passaggio 4.1.3.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.3.5
Moltiplica per .
Passaggio 4.1.4
Semplifica.
Tocca per altri passaggi...
Passaggio 4.1.4.1
Riordina i termini.
Passaggio 4.1.4.2
Riordina i fattori in .
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Scomponi da .
Tocca per altri passaggi...
Passaggio 5.2.1
Scomponi da .
Passaggio 5.2.2
Moltiplica per .
Passaggio 5.2.3
Scomponi da .
Passaggio 5.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 5.4
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 5.4.1
Imposta uguale a .
Passaggio 5.4.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 5.4.2.1
Trova il logaritmo naturale dell'equazione assegnata per rimuovere la variabile dall'esponente.
Passaggio 5.4.2.2
Non è possibile risolvere l'equazione perché è indefinita.
Indefinito
Passaggio 5.4.2.3
Non c'è soluzione per
Nessuna soluzione
Nessuna soluzione
Nessuna soluzione
Passaggio 5.5
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 5.5.1
Imposta uguale a .
Passaggio 5.5.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 5.5.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 5.5.2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 5.5.2.2.1
Dividi per ciascun termine in .
Passaggio 5.5.2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 5.5.2.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 5.5.2.2.2.1.1
Elimina il fattore comune.
Passaggio 5.5.2.2.2.1.2
Dividi per .
Passaggio 5.5.2.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 5.5.2.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 5.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 6
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 6.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 9.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 9.1.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 9.1.1.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 9.1.1.2
Scomponi da .
Passaggio 9.1.1.3
Elimina il fattore comune.
Passaggio 9.1.1.4
Riscrivi l'espressione.
Passaggio 9.1.2
Moltiplica per .
Passaggio 9.1.3
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 9.1.3.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 9.1.3.2
Elimina il fattore comune.
Passaggio 9.1.3.3
Riscrivi l'espressione.
Passaggio 9.1.4
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 9.1.5
e .
Passaggio 9.1.6
Sposta il negativo davanti alla frazione.
Passaggio 9.1.7
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 9.1.7.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 9.1.7.2
Elimina il fattore comune.
Passaggio 9.1.7.3
Riscrivi l'espressione.
Passaggio 9.1.8
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 9.1.9
e .
Passaggio 9.2
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 9.2.1
Riduci i numeratori su un comune denominatore.
Passaggio 9.2.2
Somma e .
Passaggio 10
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 11
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 11.1
Sostituisci la variabile con nell'espressione.
Passaggio 11.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 11.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 11.2.1.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 11.2.1.2
Elimina il fattore comune.
Passaggio 11.2.1.3
Riscrivi l'espressione.
Passaggio 11.2.2
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 11.2.3
Moltiplica per .
Passaggio 11.2.4
Sposta alla sinistra di .
Passaggio 11.2.5
La risposta finale è .
Passaggio 12
Questi sono gli estremi locali per .
è un minimo locale
Passaggio 13