Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 1.1.1
Per applicare la regola della catena, imposta come .
Passaggio 1.1.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.2
Differenzia.
Passaggio 1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.4
Moltiplica per .
Passaggio 1.2.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.6
Semplifica l'espressione.
Passaggio 1.2.6.1
Somma e .
Passaggio 1.2.6.2
Moltiplica per .
Passaggio 1.3
Semplifica.
Passaggio 1.3.1
Applica la proprietà distributiva.
Passaggio 1.3.2
Applica la proprietà distributiva.
Passaggio 1.3.3
Raccogli i termini.
Passaggio 1.3.3.1
Moltiplica per .
Passaggio 1.3.3.2
Eleva alla potenza di .
Passaggio 1.3.3.3
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 1.3.3.4
Somma e .
Passaggio 1.3.3.5
Moltiplica per .
Passaggio 2
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.2.3
Moltiplica per .
Passaggio 2.3
Calcola .
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.3.3
Moltiplica per .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Passaggio 4.1
Trova la derivata prima.
Passaggio 4.1.1
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 4.1.1.1
Per applicare la regola della catena, imposta come .
Passaggio 4.1.1.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.1.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 4.1.2
Differenzia.
Passaggio 4.1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.2.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.1.2.4
Moltiplica per .
Passaggio 4.1.2.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2.6
Semplifica l'espressione.
Passaggio 4.1.2.6.1
Somma e .
Passaggio 4.1.2.6.2
Moltiplica per .
Passaggio 4.1.3
Semplifica.
Passaggio 4.1.3.1
Applica la proprietà distributiva.
Passaggio 4.1.3.2
Applica la proprietà distributiva.
Passaggio 4.1.3.3
Raccogli i termini.
Passaggio 4.1.3.3.1
Moltiplica per .
Passaggio 4.1.3.3.2
Eleva alla potenza di .
Passaggio 4.1.3.3.3
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 4.1.3.3.4
Somma e .
Passaggio 4.1.3.3.5
Moltiplica per .
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Scomponi il primo membro dell'equazione.
Passaggio 5.2.1
Scomponi da .
Passaggio 5.2.1.1
Scomponi da .
Passaggio 5.2.1.2
Scomponi da .
Passaggio 5.2.1.3
Scomponi da .
Passaggio 5.2.2
Riscrivi come .
Passaggio 5.2.3
Scomponi.
Passaggio 5.2.3.1
Poiché entrambi i termini sono dei quadrati perfetti, fattorizza utilizzando la formula della differenza di quadrati, dove e .
Passaggio 5.2.3.2
Rimuovi le parentesi non necessarie.
Passaggio 5.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 5.4
Imposta uguale a .
Passaggio 5.5
Imposta uguale a e risolvi per .
Passaggio 5.5.1
Imposta uguale a .
Passaggio 5.5.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 5.6
Imposta uguale a e risolvi per .
Passaggio 5.6.1
Imposta uguale a .
Passaggio 5.6.2
Somma a entrambi i lati dell'equazione.
Passaggio 5.7
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 6
Passaggio 6.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Passaggio 9.1
Semplifica ciascun termine.
Passaggio 9.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 9.1.2
Moltiplica per .
Passaggio 9.2
Sottrai da .
Passaggio 10
è un massimo locale perché il valore della derivata seconda è negativo. Ciò si definisce test della derivata seconda.
è un massimo locale
Passaggio 11
Passaggio 11.1
Sostituisci la variabile con nell'espressione.
Passaggio 11.2
Semplifica il risultato.
Passaggio 11.2.1
Semplifica ciascun termine.
Passaggio 11.2.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 11.2.1.2
Moltiplica per .
Passaggio 11.2.2
Semplifica l'espressione.
Passaggio 11.2.2.1
Sottrai da .
Passaggio 11.2.2.2
Eleva alla potenza di .
Passaggio 11.2.3
La risposta finale è .
Passaggio 12
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 13
Passaggio 13.1
Semplifica ciascun termine.
Passaggio 13.1.1
Eleva alla potenza di .
Passaggio 13.1.2
Moltiplica per .
Passaggio 13.2
Sottrai da .
Passaggio 14
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 15
Passaggio 15.1
Sostituisci la variabile con nell'espressione.
Passaggio 15.2
Semplifica il risultato.
Passaggio 15.2.1
Semplifica ciascun termine.
Passaggio 15.2.1.1
Eleva alla potenza di .
Passaggio 15.2.1.2
Moltiplica per .
Passaggio 15.2.2
Semplifica l'espressione.
Passaggio 15.2.2.1
Sottrai da .
Passaggio 15.2.2.2
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 15.2.3
La risposta finale è .
Passaggio 16
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 17
Passaggio 17.1
Semplifica ciascun termine.
Passaggio 17.1.1
Eleva alla potenza di .
Passaggio 17.1.2
Moltiplica per .
Passaggio 17.2
Sottrai da .
Passaggio 18
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 19
Passaggio 19.1
Sostituisci la variabile con nell'espressione.
Passaggio 19.2
Semplifica il risultato.
Passaggio 19.2.1
Semplifica ciascun termine.
Passaggio 19.2.1.1
Moltiplica per sommando gli esponenti.
Passaggio 19.2.1.1.1
Moltiplica per .
Passaggio 19.2.1.1.1.1
Eleva alla potenza di .
Passaggio 19.2.1.1.1.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 19.2.1.1.2
Somma e .
Passaggio 19.2.1.2
Eleva alla potenza di .
Passaggio 19.2.2
Semplifica l'espressione.
Passaggio 19.2.2.1
Sottrai da .
Passaggio 19.2.2.2
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 19.2.3
La risposta finale è .
Passaggio 20
Questi sono gli estremi locali per .
è un massimo locale
è un minimo locale
è un minimo locale
Passaggio 21