Calcolo Esempi

Trovare i Massimi e i Minimi Locali f(x)=(x-5)(x^2-10x-50)
Passaggio 1
Trova la derivata prima della funzione.
Tocca per altri passaggi...
Passaggio 1.1
Differenzia usando la regola del prodotto, che indica che è dove e .
Passaggio 1.2
Differenzia.
Tocca per altri passaggi...
Passaggio 1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.5
Moltiplica per .
Passaggio 1.2.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.7
Somma e .
Passaggio 1.2.8
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.9
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.10
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.11
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 1.2.11.1
Somma e .
Passaggio 1.2.11.2
Moltiplica per .
Passaggio 1.3
Semplifica.
Tocca per altri passaggi...
Passaggio 1.3.1
Applica la proprietà distributiva.
Passaggio 1.3.2
Applica la proprietà distributiva.
Passaggio 1.3.3
Applica la proprietà distributiva.
Passaggio 1.3.4
Raccogli i termini.
Tocca per altri passaggi...
Passaggio 1.3.4.1
Eleva alla potenza di .
Passaggio 1.3.4.2
Eleva alla potenza di .
Passaggio 1.3.4.3
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 1.3.4.4
Somma e .
Passaggio 1.3.4.5
Moltiplica per .
Passaggio 1.3.4.6
Sposta alla sinistra di .
Passaggio 1.3.4.7
Moltiplica per .
Passaggio 1.3.4.8
Sottrai da .
Passaggio 1.3.4.9
Somma e .
Passaggio 1.3.4.10
Sottrai da .
Passaggio 1.3.4.11
Sottrai da .
Passaggio 1.3.4.12
Somma e .
Passaggio 2
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Tocca per altri passaggi...
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.2.3
Moltiplica per .
Passaggio 2.3
Calcola .
Tocca per altri passaggi...
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.3.3
Moltiplica per .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1.1
Differenzia usando la regola del prodotto, che indica che è dove e .
Passaggio 4.1.2
Differenzia.
Tocca per altri passaggi...
Passaggio 4.1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.1.2.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.1.2.5
Moltiplica per .
Passaggio 4.1.2.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2.7
Somma e .
Passaggio 4.1.2.8
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.2.9
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.1.2.10
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2.11
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 4.1.2.11.1
Somma e .
Passaggio 4.1.2.11.2
Moltiplica per .
Passaggio 4.1.3
Semplifica.
Tocca per altri passaggi...
Passaggio 4.1.3.1
Applica la proprietà distributiva.
Passaggio 4.1.3.2
Applica la proprietà distributiva.
Passaggio 4.1.3.3
Applica la proprietà distributiva.
Passaggio 4.1.3.4
Raccogli i termini.
Tocca per altri passaggi...
Passaggio 4.1.3.4.1
Eleva alla potenza di .
Passaggio 4.1.3.4.2
Eleva alla potenza di .
Passaggio 4.1.3.4.3
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 4.1.3.4.4
Somma e .
Passaggio 4.1.3.4.5
Moltiplica per .
Passaggio 4.1.3.4.6
Sposta alla sinistra di .
Passaggio 4.1.3.4.7
Moltiplica per .
Passaggio 4.1.3.4.8
Sottrai da .
Passaggio 4.1.3.4.9
Somma e .
Passaggio 4.1.3.4.10
Sottrai da .
Passaggio 4.1.3.4.11
Sottrai da .
Passaggio 4.1.3.4.12
Somma e .
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Scomponi da .
Tocca per altri passaggi...
Passaggio 5.2.1
Scomponi da .
Passaggio 5.2.2
Scomponi da .
Passaggio 5.2.3
Scomponi da .
Passaggio 5.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 5.4
Imposta uguale a .
Passaggio 5.5
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 5.5.1
Imposta uguale a .
Passaggio 5.5.2
Somma a entrambi i lati dell'equazione.
Passaggio 5.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 6
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 6.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 9.1
Moltiplica per .
Passaggio 9.2
Sottrai da .
Passaggio 10
è un massimo locale perché il valore della derivata seconda è negativo. Ciò si definisce test della derivata seconda.
è un massimo locale
Passaggio 11
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 11.1
Sostituisci la variabile con nell'espressione.
Passaggio 11.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 11.2.1
Sottrai da .
Passaggio 11.2.2
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 11.2.2.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 11.2.2.2
Moltiplica per .
Passaggio 11.2.3
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 11.2.3.1
Somma e .
Passaggio 11.2.3.2
Sottrai da .
Passaggio 11.2.3.3
Moltiplica per .
Passaggio 11.2.4
La risposta finale è .
Passaggio 12
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 13
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 13.1
Moltiplica per .
Passaggio 13.2
Sottrai da .
Passaggio 14
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 15
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 15.1
Sostituisci la variabile con nell'espressione.
Passaggio 15.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 15.2.1
Sottrai da .
Passaggio 15.2.2
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 15.2.2.1
Eleva alla potenza di .
Passaggio 15.2.2.2
Moltiplica per .
Passaggio 15.2.3
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 15.2.3.1
Sottrai da .
Passaggio 15.2.3.2
Sottrai da .
Passaggio 15.2.3.3
Moltiplica per .
Passaggio 15.2.4
La risposta finale è .
Passaggio 16
Questi sono gli estremi locali per .
è un massimo locale
è un minimo locale
Passaggio 17