Calcolo Esempi

Trovare i Massimi e i Minimi Locali f(x)=(x-1)e^x
Passaggio 1
Trova la derivata prima della funzione.
Tocca per altri passaggi...
Passaggio 1.1
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 1.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 1.3
Differenzia.
Tocca per altri passaggi...
Passaggio 1.3.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.4
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 1.3.4.1
Somma e .
Passaggio 1.3.4.2
Moltiplica per .
Passaggio 1.4
Semplifica.
Tocca per altri passaggi...
Passaggio 1.4.1
Applica la proprietà distributiva.
Passaggio 1.4.2
Raccogli i termini.
Tocca per altri passaggi...
Passaggio 1.4.2.1
Riscrivi come .
Passaggio 1.4.2.2
Somma e .
Passaggio 1.4.2.3
Somma e .
Passaggio 1.4.3
Riordina i fattori di .
Passaggio 1.4.4
Riordina i fattori in .
Passaggio 2
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 2.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 2.3
Differenzia usando la regola della potenza.
Tocca per altri passaggi...
Passaggio 2.3.1
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.2
Moltiplica per .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1.1
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 4.1.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 4.1.3
Differenzia.
Tocca per altri passaggi...
Passaggio 4.1.3.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.3.4
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 4.1.3.4.1
Somma e .
Passaggio 4.1.3.4.2
Moltiplica per .
Passaggio 4.1.4
Semplifica.
Tocca per altri passaggi...
Passaggio 4.1.4.1
Applica la proprietà distributiva.
Passaggio 4.1.4.2
Raccogli i termini.
Tocca per altri passaggi...
Passaggio 4.1.4.2.1
Riscrivi come .
Passaggio 4.1.4.2.2
Somma e .
Passaggio 4.1.4.2.3
Somma e .
Passaggio 4.1.4.3
Riordina i fattori di .
Passaggio 4.1.4.4
Riordina i fattori in .
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 5.3
Imposta uguale a .
Passaggio 5.4
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 5.4.1
Imposta uguale a .
Passaggio 5.4.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 5.4.2.1
Trova il logaritmo naturale dell'equazione assegnata per rimuovere la variabile dall'esponente.
Passaggio 5.4.2.2
Non è possibile risolvere l'equazione perché è indefinita.
Indefinito
Passaggio 5.4.2.3
Non c'è soluzione per
Nessuna soluzione
Nessuna soluzione
Nessuna soluzione
Passaggio 5.5
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 6
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 6.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 9.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 9.1.1
Qualsiasi valore elevato a è .
Passaggio 9.1.2
Moltiplica per .
Passaggio 9.1.3
Qualsiasi valore elevato a è .
Passaggio 9.2
Somma e .
Passaggio 10
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 11
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 11.1
Sostituisci la variabile con nell'espressione.
Passaggio 11.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 11.2.1
Sottrai da .
Passaggio 11.2.2
Qualsiasi valore elevato a è .
Passaggio 11.2.3
Moltiplica per .
Passaggio 11.2.4
La risposta finale è .
Passaggio 12
Questi sono gli estremi locali per .
è un minimo locale
Passaggio 13