Calcolo Esempi

Valutare il Limite limite per x tendente a 0 di ( radice quadrata di 1+2x- radice quadrata di 1-4x)/x
Passaggio 1
Applica la regola di de l'Hôpital
Tocca per altri passaggi...
Passaggio 1.1
Calcola il limite del numeratore e il limite del denominatore.
Tocca per altri passaggi...
Passaggio 1.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.1.2
Calcola il limite del numeratore.
Tocca per altri passaggi...
Passaggio 1.1.2.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.2.2
Sposta il limite sotto il segno radicale.
Passaggio 1.1.2.3
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.2.4
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.2.5
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.1.2.6
Sposta il limite sotto il segno radicale.
Passaggio 1.1.2.7
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.2.8
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.2.9
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.1.2.10
Calcola il limite inserendo per tutte le occorrenze di .
Tocca per altri passaggi...
Passaggio 1.1.2.10.1
Calcola il limite di inserendo per .
Passaggio 1.1.2.10.2
Calcola il limite di inserendo per .
Passaggio 1.1.2.11
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 1.1.2.11.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.1.2.11.1.1
Moltiplica per .
Passaggio 1.1.2.11.1.2
Somma e .
Passaggio 1.1.2.11.1.3
Qualsiasi radice di è .
Passaggio 1.1.2.11.1.4
Moltiplica per .
Passaggio 1.1.2.11.1.5
Somma e .
Passaggio 1.1.2.11.1.6
Qualsiasi radice di è .
Passaggio 1.1.2.11.1.7
Moltiplica per .
Passaggio 1.1.2.11.2
Sottrai da .
Passaggio 1.1.3
Calcola il limite di inserendo per .
Passaggio 1.1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 1.3
Trova la derivata del numeratore e del denominatore.
Tocca per altri passaggi...
Passaggio 1.3.1
Differenzia numeratore e denominatore.
Passaggio 1.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.3
Calcola .
Tocca per altri passaggi...
Passaggio 1.3.3.1
Usa per riscrivere come .
Passaggio 1.3.3.2
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 1.3.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.3.3.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3.3.3
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.3.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.3.6
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.3.7
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.3.3.8
e .
Passaggio 1.3.3.9
Riduci i numeratori su un comune denominatore.
Passaggio 1.3.3.10
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 1.3.3.10.1
Moltiplica per .
Passaggio 1.3.3.10.2
Sottrai da .
Passaggio 1.3.3.11
Sposta il negativo davanti alla frazione.
Passaggio 1.3.3.12
Moltiplica per .
Passaggio 1.3.3.13
Somma e .
Passaggio 1.3.3.14
e .
Passaggio 1.3.3.15
e .
Passaggio 1.3.3.16
Sposta alla sinistra di .
Passaggio 1.3.3.17
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 1.3.3.18
Elimina il fattore comune.
Passaggio 1.3.3.19
Riscrivi l'espressione.
Passaggio 1.3.4
Calcola .
Tocca per altri passaggi...
Passaggio 1.3.4.1
Usa per riscrivere come .
Passaggio 1.3.4.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.4.3
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 1.3.4.3.1
Per applicare la regola della catena, imposta come .
Passaggio 1.3.4.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.4.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3.4.4
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.4.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.4.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.4.7
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.4.8
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.3.4.9
e .
Passaggio 1.3.4.10
Riduci i numeratori su un comune denominatore.
Passaggio 1.3.4.11
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 1.3.4.11.1
Moltiplica per .
Passaggio 1.3.4.11.2
Sottrai da .
Passaggio 1.3.4.12
Sposta il negativo davanti alla frazione.
Passaggio 1.3.4.13
Moltiplica per .
Passaggio 1.3.4.14
Sottrai da .
Passaggio 1.3.4.15
e .
Passaggio 1.3.4.16
e .
Passaggio 1.3.4.17
Sposta alla sinistra di .
Passaggio 1.3.4.18
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 1.3.4.19
Scomponi da .
Passaggio 1.3.4.20
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 1.3.4.20.1
Scomponi da .
Passaggio 1.3.4.20.2
Elimina il fattore comune.
Passaggio 1.3.4.20.3
Riscrivi l'espressione.
Passaggio 1.3.4.21
Sposta il negativo davanti alla frazione.
Passaggio 1.3.4.22
Moltiplica per .
Passaggio 1.3.4.23
Moltiplica per .
Passaggio 1.3.5
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.4
Converti gli esponenti frazionari in radicali.
Tocca per altri passaggi...
Passaggio 1.4.1
Riscrivi come .
Passaggio 1.4.2
Riscrivi come .
Passaggio 1.5
Dividi per .
Passaggio 2
Calcola il limite.
Tocca per altri passaggi...
Passaggio 2.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 2.2
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 2.3
Calcola il limite di che è costante, mentre tende a .
Passaggio 2.4
Sposta il limite sotto il segno radicale.
Passaggio 2.5
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 2.6
Calcola il limite di che è costante, mentre tende a .
Passaggio 2.7
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2.8
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2.9
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 2.10
Calcola il limite di che è costante, mentre tende a .
Passaggio 2.11
Sposta il limite sotto il segno radicale.
Passaggio 2.12
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 2.13
Calcola il limite di che è costante, mentre tende a .
Passaggio 2.14
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 3
Calcola il limite inserendo per tutte le occorrenze di .
Tocca per altri passaggi...
Passaggio 3.1
Calcola il limite di inserendo per .
Passaggio 3.2
Calcola il limite di inserendo per .
Passaggio 4
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 4.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 4.1.1
Semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 4.1.1.1
Moltiplica per .
Passaggio 4.1.1.2
Somma e .
Passaggio 4.1.1.3
Qualsiasi radice di è .
Passaggio 4.1.2
Dividi per .
Passaggio 4.1.3
Semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 4.1.3.1
Moltiplica per .
Passaggio 4.1.3.2
Somma e .
Passaggio 4.1.3.3
Qualsiasi radice di è .
Passaggio 4.1.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 4.1.4.1
Elimina il fattore comune.
Passaggio 4.1.4.2
Riscrivi l'espressione.
Passaggio 4.1.5
Moltiplica per .
Passaggio 4.2
Somma e .