Calcolo Esempi

Valutare il Limite limite per x tendente a 0 di (2x-3sin(x))/(5x)
Passaggio 1
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2
Applica la regola di de l'Hôpital
Tocca per altri passaggi...
Passaggio 2.1
Calcola il limite del numeratore e il limite del denominatore.
Tocca per altri passaggi...
Passaggio 2.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 2.1.2
Calcola il limite del numeratore.
Tocca per altri passaggi...
Passaggio 2.1.2.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 2.1.2.2
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2.1.2.3
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2.1.2.4
Sposta il limite all'interno della funzione trigonometrica, poiché il seno è continuo.
Passaggio 2.1.2.5
Calcola il limite inserendo per tutte le occorrenze di .
Tocca per altri passaggi...
Passaggio 2.1.2.5.1
Calcola il limite di inserendo per .
Passaggio 2.1.2.5.2
Calcola il limite di inserendo per .
Passaggio 2.1.2.6
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 2.1.2.6.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 2.1.2.6.1.1
Moltiplica per .
Passaggio 2.1.2.6.1.2
Il valore esatto di è .
Passaggio 2.1.2.6.1.3
Moltiplica per .
Passaggio 2.1.2.6.2
Somma e .
Passaggio 2.1.3
Calcola il limite di inserendo per .
Passaggio 2.1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 2.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 2.3
Trova la derivata del numeratore e del denominatore.
Tocca per altri passaggi...
Passaggio 2.3.1
Differenzia numeratore e denominatore.
Passaggio 2.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.3.3
Calcola .
Tocca per altri passaggi...
Passaggio 2.3.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.3.3.3
Moltiplica per .
Passaggio 2.3.4
Calcola .
Tocca per altri passaggi...
Passaggio 2.3.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.4.2
La derivata di rispetto a è .
Passaggio 2.3.5
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.4
Dividi per .
Passaggio 3
Calcola il limite.
Tocca per altri passaggi...
Passaggio 3.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 3.2
Calcola il limite di che è costante, mentre tende a .
Passaggio 3.3
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 3.4
Sposta il limite all'interno della funzione trigonometrica, poiché il coseno è continuo.
Passaggio 4
Calcola il limite di inserendo per .
Passaggio 5
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 5.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 5.1.1
Il valore esatto di è .
Passaggio 5.1.2
Moltiplica per .
Passaggio 5.2
Sottrai da .
Passaggio 5.3
e .
Passaggio 5.4
Sposta il negativo davanti alla frazione.
Passaggio 6
Il risultato può essere mostrato in più forme.
Forma esatta:
Forma decimale: