Calcolo Esempi

Tracciare tan( logaritmo naturale di x)
Passaggio 1
Trova gli asintoti.
Tocca per altri passaggi...
Passaggio 1.1
Per qualsiasi , gli asintoti verticali si verificano con , dove è un numero intero. usa il periodo di base per , , per trovare gli asintoti verticali per . Imposta l'interno della funzione tangente, , per uguale a per trovare dove gli asintoti verticali si verificano per .
Passaggio 1.2
Imposta l'interno della funzione tangente pari a .
Passaggio 1.3
Il periodo di base per si verificherà a , dove e sono asintoti verticali.
Passaggio 1.4
Individua il periodo per trovare dove esistono gli asintoti verticali.
Tocca per altri passaggi...
Passaggio 1.4.1
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 1.4.2
Dividi per .
Passaggio 1.5
Si hanno asintoti verticali di con , e con ogni , dove è un intero.
Passaggio 1.6
Ci sono solo asintoti verticali per le funzioni tangente e cotangente.
Asintoti verticali: per qualsiasi intero
Nessun asintoto orizzontale
Nessun asintoto obliquo
Asintoti verticali: per qualsiasi intero
Nessun asintoto orizzontale
Nessun asintoto obliquo
Passaggio 2
Trova il punto in corrispondenza di .
Tocca per altri passaggi...
Passaggio 2.1
Sostituisci la variabile con nell'espressione.
Passaggio 2.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 2.2.1
Il logaritmo naturale di è .
Passaggio 2.2.2
Il valore esatto di è .
Passaggio 2.2.3
La risposta finale è .
Passaggio 2.3
Converti in decimale.
Passaggio 3
Trova il punto in corrispondenza di .
Tocca per altri passaggi...
Passaggio 3.1
Sostituisci la variabile con nell'espressione.
Passaggio 3.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 3.2.1
Calcola .
Passaggio 3.2.2
La risposta finale è .
Passaggio 4
Trova il punto in corrispondenza di .
Tocca per altri passaggi...
Passaggio 4.1
Sostituisci la variabile con nell'espressione.
Passaggio 4.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 4.2.1
Calcola .
Passaggio 4.2.2
La risposta finale è .
Passaggio 5
La funzione logaritmo può essere rappresentata graficamente usando l'asintoto verticale in e i punti .
Asintoto verticale:
Passaggio 6