Inserisci un problema...
Calcolo Esempi
Passaggio 1
Sottrai da entrambi i lati della diseguaglianza.
Passaggio 2
Applica l'identità a doppio angolo del seno.
Passaggio 3
Passaggio 3.1
Scomponi da .
Passaggio 3.2
Scomponi da .
Passaggio 3.3
Scomponi da .
Passaggio 4
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 5
Passaggio 5.1
Imposta uguale a .
Passaggio 5.2
Risolvi per .
Passaggio 5.2.1
Trova il valore dell'incognita corrispondente all'inverso del seno presente nell'equazione assegnata.
Passaggio 5.2.2
Semplifica il lato destro.
Passaggio 5.2.2.1
Il valore esatto di è .
Passaggio 5.2.3
La funzione del seno è positiva nel primo e nel secondo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel secondo quadrante.
Passaggio 5.2.4
Sottrai da .
Passaggio 5.2.5
Trova il periodo di .
Passaggio 5.2.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 5.2.5.2
Sostituisci con nella formula per il periodo.
Passaggio 5.2.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 5.2.5.4
Dividi per .
Passaggio 5.2.6
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
, per qualsiasi intero
Passaggio 6
Passaggio 6.1
Imposta uguale a .
Passaggio 6.2
Risolvi per .
Passaggio 6.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 6.2.2
Dividi per ciascun termine in e semplifica.
Passaggio 6.2.2.1
Dividi per ciascun termine in .
Passaggio 6.2.2.2
Semplifica il lato sinistro.
Passaggio 6.2.2.2.1
Elimina il fattore comune di .
Passaggio 6.2.2.2.1.1
Elimina il fattore comune.
Passaggio 6.2.2.2.1.2
Dividi per .
Passaggio 6.2.3
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 6.2.4
Semplifica il lato destro.
Passaggio 6.2.4.1
Il valore esatto di è .
Passaggio 6.2.5
La funzione del coseno è positiva nel primo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel quarto quadrante.
Passaggio 6.2.6
Semplifica .
Passaggio 6.2.6.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 6.2.6.2
Riduci le frazioni.
Passaggio 6.2.6.2.1
e .
Passaggio 6.2.6.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 6.2.6.3
Semplifica il numeratore.
Passaggio 6.2.6.3.1
Moltiplica per .
Passaggio 6.2.6.3.2
Sottrai da .
Passaggio 6.2.7
Trova il periodo di .
Passaggio 6.2.7.1
Si può calcolare il periodo della funzione usando .
Passaggio 6.2.7.2
Sostituisci con nella formula per il periodo.
Passaggio 6.2.7.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 6.2.7.4
Dividi per .
Passaggio 6.2.8
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
, per qualsiasi intero
Passaggio 7
La soluzione finale è data da tutti i valori che rendono vera.
, per qualsiasi intero
Passaggio 8
Combina e in .
, per qualsiasi intero
Passaggio 9
Utilizza ogni radice per creare gli intervalli di prova.
Passaggio 10
Passaggio 10.1
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 10.1.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 10.1.2
Sostituisci con nella diseguaglianza originale.
Passaggio 10.1.3
Il lato sinistro di è maggiore del lato destro di ; ciò significa che l'affermazione data è sempre vera.
True
True
Passaggio 10.2
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 10.2.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 10.2.2
Sostituisci con nella diseguaglianza originale.
Passaggio 10.2.3
Il lato sinistro di è minore del lato destro di ; ciò significa che l'affermazione data è falsa.
False
False
Passaggio 10.3
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 10.3.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 10.3.2
Sostituisci con nella diseguaglianza originale.
Passaggio 10.3.3
Il lato sinistro di è maggiore del lato destro di ; ciò significa che l'affermazione data è sempre vera.
True
True
Passaggio 10.4
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 10.4.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 10.4.2
Sostituisci con nella diseguaglianza originale.
Passaggio 10.4.3
Il lato sinistro di è minore del lato destro di ; ciò significa che l'affermazione data è falsa.
False
False
Passaggio 10.5
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 10.5.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 10.5.2
Sostituisci con nella diseguaglianza originale.
Passaggio 10.5.3
Il lato sinistro di è maggiore del lato destro di ; ciò significa che l'affermazione data è sempre vera.
True
True
Passaggio 10.6
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 10.6.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 10.6.2
Sostituisci con nella diseguaglianza originale.
Passaggio 10.6.3
Il lato sinistro di è minore del lato destro di ; ciò significa che l'affermazione data è falsa.
False
False
Passaggio 10.7
Confronta gli intervalli per determinare quali soddisfano la diseguaglianza originale.
Vero
Falso
Vero
Falso
Vero
Falso
Vero
Falso
Vero
Falso
Vero
Falso
Passaggio 11
La soluzione è costituita da tutti gli intervalli veri.
or or , for any integer
Passaggio 12
Combina gli intervalli.
, per qualsiasi intero
Passaggio 13