Calcolo Esempi

Trovare Dove è Crescente/Decrescente Usando le Derivate f(x)=1/(x-4)
Passaggio 1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1
Riscrivi come .
Passaggio 1.1.2
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 1.1.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.1.3
Differenzia.
Tocca per altri passaggi...
Passaggio 1.1.3.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3.4
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 1.1.3.4.1
Somma e .
Passaggio 1.1.3.4.2
Moltiplica per .
Passaggio 1.1.4
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Poni il numeratore uguale a zero.
Passaggio 2.3
Poiché , non ci sono soluzioni.
Nessuna soluzione
Nessuna soluzione
Passaggio 3
Non ci sono valori di nel dominio del problema originale per cui la derivata sia o indefinita.
Nessun punto critico trovato
Passaggio 4
Trova il punto in cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 4.1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 4.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 4.2.1
Poni uguale a .
Passaggio 4.2.2
Somma a entrambi i lati dell'equazione.
Passaggio 5
Dopo aver trovato il punto che rende la derivata uguale a o indefinita, l'intervallo per verificare dove è crescente e dove è decrescente corrisponde a .
Passaggio 6
Sostituisci un valore dell'intervallo nella derivata per determinare se la funzione è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 6.2.1
Semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 6.2.1.1
Sottrai da .
Passaggio 6.2.1.2
Eleva alla potenza di .
Passaggio 6.2.2
Riduci l'espressione eliminando i fattori comuni.
Tocca per altri passaggi...
Passaggio 6.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.2.2.1.1
Elimina il fattore comune.
Passaggio 6.2.2.1.2
Riscrivi l'espressione.
Passaggio 6.2.2.2
Moltiplica per .
Passaggio 6.2.3
La risposta finale è .
Passaggio 6.3
In corrispondenza di la derivata è . Poiché il valore è negativo, la funzione è decrescente su .
Decrescente su perché
Decrescente su perché
Passaggio 7
Sostituisci un valore dell'intervallo nella derivata per determinare se la funzione è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 7.1
Sostituisci la variabile con nell'espressione.
Passaggio 7.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 7.2.1
Semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 7.2.1.1
Sottrai da .
Passaggio 7.2.1.2
Uno elevato a qualsiasi potenza è uno.
Passaggio 7.2.2
Riduci l'espressione eliminando i fattori comuni.
Tocca per altri passaggi...
Passaggio 7.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 7.2.2.1.1
Elimina il fattore comune.
Passaggio 7.2.2.1.2
Riscrivi l'espressione.
Passaggio 7.2.2.2
Moltiplica per .
Passaggio 7.2.3
La risposta finale è .
Passaggio 7.3
In corrispondenza di la derivata è . Poiché il valore è negativo, la funzione è decrescente su .
Decrescente su perché
Decrescente su perché
Passaggio 8
Elenca gli intervalli in cui la funzione è crescente e decrescente.
Decrescente su:
Passaggio 9