Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Calcola il limite del numeratore e il limite del denominatore.
Passaggio 1.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.1.2
Calcola il limite del numeratore.
Passaggio 1.1.2.1
Calcola il limite.
Passaggio 1.1.2.1.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.2.1.2
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.2.2
Calcola il limite di inserendo per .
Passaggio 1.1.2.3
Semplifica la risposta.
Passaggio 1.1.2.3.1
Moltiplica per .
Passaggio 1.1.2.3.2
Sottrai da .
Passaggio 1.1.3
Calcola il limite del denominatore.
Passaggio 1.1.3.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.3.2
Sposta il limite sotto il segno radicale.
Passaggio 1.1.3.3
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.3.4
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.3.5
Sposta il limite sotto il segno radicale.
Passaggio 1.1.3.6
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.3.7
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.3.8
Calcola il limite inserendo per tutte le occorrenze di .
Passaggio 1.1.3.8.1
Calcola il limite di inserendo per .
Passaggio 1.1.3.8.2
Calcola il limite di inserendo per .
Passaggio 1.1.3.9
Semplifica la risposta.
Passaggio 1.1.3.9.1
Semplifica ciascun termine.
Passaggio 1.1.3.9.1.1
Moltiplica per .
Passaggio 1.1.3.9.1.2
Sottrai da .
Passaggio 1.1.3.9.1.3
Qualsiasi radice di è .
Passaggio 1.1.3.9.1.4
Sottrai da .
Passaggio 1.1.3.9.1.5
Qualsiasi radice di è .
Passaggio 1.1.3.9.1.6
Moltiplica per .
Passaggio 1.1.3.9.2
Sottrai da .
Passaggio 1.1.3.9.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.1.3.10
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 1.3
Trova la derivata del numeratore e del denominatore.
Passaggio 1.3.1
Differenzia numeratore e denominatore.
Passaggio 1.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.5
Somma e .
Passaggio 1.3.6
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.7
Calcola .
Passaggio 1.3.7.1
Usa per riscrivere come .
Passaggio 1.3.7.2
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 1.3.7.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.3.7.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.7.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3.7.3
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.7.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.7.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.7.6
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.3.7.7
e .
Passaggio 1.3.7.8
Riduci i numeratori su un comune denominatore.
Passaggio 1.3.7.9
Semplifica il numeratore.
Passaggio 1.3.7.9.1
Moltiplica per .
Passaggio 1.3.7.9.2
Sottrai da .
Passaggio 1.3.7.10
Sposta il negativo davanti alla frazione.
Passaggio 1.3.7.11
Somma e .
Passaggio 1.3.7.12
e .
Passaggio 1.3.7.13
Moltiplica per .
Passaggio 1.3.7.14
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 1.3.8
Calcola .
Passaggio 1.3.8.1
Usa per riscrivere come .
Passaggio 1.3.8.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.8.3
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 1.3.8.3.1
Per applicare la regola della catena, imposta come .
Passaggio 1.3.8.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.8.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3.8.4
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.8.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.8.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.8.7
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.8.8
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.3.8.9
e .
Passaggio 1.3.8.10
Riduci i numeratori su un comune denominatore.
Passaggio 1.3.8.11
Semplifica il numeratore.
Passaggio 1.3.8.11.1
Moltiplica per .
Passaggio 1.3.8.11.2
Sottrai da .
Passaggio 1.3.8.12
Sposta il negativo davanti alla frazione.
Passaggio 1.3.8.13
Moltiplica per .
Passaggio 1.3.8.14
Sottrai da .
Passaggio 1.3.8.15
e .
Passaggio 1.3.8.16
e .
Passaggio 1.3.8.17
Sposta alla sinistra di .
Passaggio 1.3.8.18
Riscrivi come .
Passaggio 1.3.8.19
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 1.3.8.20
Sposta il negativo davanti alla frazione.
Passaggio 1.3.8.21
Moltiplica per .
Passaggio 1.3.8.22
Moltiplica per .
Passaggio 1.4
Converti gli esponenti frazionari in radicali.
Passaggio 1.4.1
Riscrivi come .
Passaggio 1.4.2
Riscrivi come .
Passaggio 2
Passaggio 2.1
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 2.2
Calcola il limite di che è costante, mentre tende a .
Passaggio 2.3
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 2.4
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2.5
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 2.6
Calcola il limite di che è costante, mentre tende a .
Passaggio 2.7
Sposta il limite sotto il segno radicale.
Passaggio 2.8
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 2.9
Calcola il limite di che è costante, mentre tende a .
Passaggio 2.10
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2.11
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 2.12
Calcola il limite di che è costante, mentre tende a .
Passaggio 2.13
Sposta il limite sotto il segno radicale.
Passaggio 2.14
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 2.15
Calcola il limite di che è costante, mentre tende a .
Passaggio 3
Passaggio 3.1
Calcola il limite di inserendo per .
Passaggio 3.2
Calcola il limite di inserendo per .
Passaggio 4
Passaggio 4.1
Semplifica il denominatore.
Passaggio 4.1.1
Moltiplica per .
Passaggio 4.1.2
Sottrai da .
Passaggio 4.1.3
Qualsiasi radice di è .
Passaggio 4.2
Semplifica il denominatore.
Passaggio 4.2.1
Sottrai da .
Passaggio 4.2.2
Qualsiasi radice di è .
Passaggio 4.3
Semplifica il denominatore.
Passaggio 4.3.1
Elimina il fattore comune di .
Passaggio 4.3.1.1
Elimina il fattore comune.
Passaggio 4.3.1.2
Riscrivi l'espressione.
Passaggio 4.3.2
Moltiplica per .
Passaggio 4.3.3
Elimina il fattore comune di .
Passaggio 4.3.3.1
Elimina il fattore comune.
Passaggio 4.3.3.2
Riscrivi l'espressione.
Passaggio 4.3.4
Moltiplica per .
Passaggio 4.3.5
Riduci i numeratori su un comune denominatore.
Passaggio 4.3.6
Somma e .
Passaggio 4.3.7
Dividi per .
Passaggio 4.4
Dividi per .