Calcolo Esempi

Trovare i Punti di Flesso f(x)=3x^4-16x^3+18x^2
Passaggio 1
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2.3
Moltiplica per .
Passaggio 1.1.3
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.3.3
Moltiplica per .
Passaggio 1.1.4
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.4.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.4.3
Moltiplica per .
Passaggio 1.2
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.2.3
Moltiplica per .
Passaggio 1.2.3
Calcola .
Tocca per altri passaggi...
Passaggio 1.2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.3.3
Moltiplica per .
Passaggio 1.2.4
Calcola .
Tocca per altri passaggi...
Passaggio 1.2.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.4.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.4.3
Moltiplica per .
Passaggio 1.3
La derivata seconda di rispetto a è .
Passaggio 2
Imposta la derivata seconda pari a , quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 2.1
Imposta la derivata seconda uguale a .
Passaggio 2.2
Scomponi da .
Tocca per altri passaggi...
Passaggio 2.2.1
Scomponi da .
Passaggio 2.2.2
Scomponi da .
Passaggio 2.2.3
Scomponi da .
Passaggio 2.2.4
Scomponi da .
Passaggio 2.2.5
Scomponi da .
Passaggio 2.3
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 2.3.1
Dividi per ciascun termine in .
Passaggio 2.3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.3.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.3.2.1.1
Elimina il fattore comune.
Passaggio 2.3.2.1.2
Dividi per .
Passaggio 2.3.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.3.3.1
Dividi per .
Passaggio 2.4
Utilizza la formula quadratica per trovare le soluzioni.
Passaggio 2.5
Sostituisci i valori , e nella formula quadratica e risolvi per .
Passaggio 2.6
Semplifica.
Tocca per altri passaggi...
Passaggio 2.6.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.6.1.1
Eleva alla potenza di .
Passaggio 2.6.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.6.1.2.1
Moltiplica per .
Passaggio 2.6.1.2.2
Moltiplica per .
Passaggio 2.6.1.3
Sottrai da .
Passaggio 2.6.1.4
Riscrivi come .
Tocca per altri passaggi...
Passaggio 2.6.1.4.1
Scomponi da .
Passaggio 2.6.1.4.2
Riscrivi come .
Passaggio 2.6.1.5
Estrai i termini dal radicale.
Passaggio 2.6.2
Moltiplica per .
Passaggio 2.6.3
Semplifica .
Passaggio 2.7
Semplifica l'espressione per risolvere per la porzione di .
Tocca per altri passaggi...
Passaggio 2.7.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.7.1.1
Eleva alla potenza di .
Passaggio 2.7.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.7.1.2.1
Moltiplica per .
Passaggio 2.7.1.2.2
Moltiplica per .
Passaggio 2.7.1.3
Sottrai da .
Passaggio 2.7.1.4
Riscrivi come .
Tocca per altri passaggi...
Passaggio 2.7.1.4.1
Scomponi da .
Passaggio 2.7.1.4.2
Riscrivi come .
Passaggio 2.7.1.5
Estrai i termini dal radicale.
Passaggio 2.7.2
Moltiplica per .
Passaggio 2.7.3
Semplifica .
Passaggio 2.7.4
Cambia da a .
Passaggio 2.8
Semplifica l'espressione per risolvere per la porzione di .
Tocca per altri passaggi...
Passaggio 2.8.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.8.1.1
Eleva alla potenza di .
Passaggio 2.8.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.8.1.2.1
Moltiplica per .
Passaggio 2.8.1.2.2
Moltiplica per .
Passaggio 2.8.1.3
Sottrai da .
Passaggio 2.8.1.4
Riscrivi come .
Tocca per altri passaggi...
Passaggio 2.8.1.4.1
Scomponi da .
Passaggio 2.8.1.4.2
Riscrivi come .
Passaggio 2.8.1.5
Estrai i termini dal radicale.
Passaggio 2.8.2
Moltiplica per .
Passaggio 2.8.3
Semplifica .
Passaggio 2.8.4
Cambia da a .
Passaggio 2.9
La risposta finale è la combinazione di entrambe le soluzioni.
Passaggio 3
Trova i punti dove la derivata seconda è .
Tocca per altri passaggi...
Passaggio 3.1
Sostituisci in per trovare il valore di .
Tocca per altri passaggi...
Passaggio 3.1.1
Sostituisci la variabile con nell'espressione.
Passaggio 3.1.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 3.1.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 3.1.2.1.1
Eleva alla potenza di .
Passaggio 3.1.2.1.2
Moltiplica per .
Passaggio 3.1.2.1.3
Eleva alla potenza di .
Passaggio 3.1.2.1.4
Moltiplica per .
Passaggio 3.1.2.1.5
Eleva alla potenza di .
Passaggio 3.1.2.1.6
Moltiplica per .
Passaggio 3.1.2.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 3.1.2.2.1
Sottrai da .
Passaggio 3.1.2.2.2
Somma e .
Passaggio 3.1.2.3
La risposta finale è .
Passaggio 3.2
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 3.3
Sostituisci in per trovare il valore di .
Tocca per altri passaggi...
Passaggio 3.3.1
Sostituisci la variabile con nell'espressione.
Passaggio 3.3.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 3.3.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 3.3.2.1.1
Eleva alla potenza di .
Passaggio 3.3.2.1.2
Moltiplica per .
Passaggio 3.3.2.1.3
Eleva alla potenza di .
Passaggio 3.3.2.1.4
Moltiplica per .
Passaggio 3.3.2.1.5
Eleva alla potenza di .
Passaggio 3.3.2.1.6
Moltiplica per .
Passaggio 3.3.2.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 3.3.2.2.1
Sottrai da .
Passaggio 3.3.2.2.2
Somma e .
Passaggio 3.3.2.3
La risposta finale è .
Passaggio 3.4
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 3.5
Determina i punti che potrebbero essere punti di flesso.
Passaggio 4
Dividi in intervalli intorno ai punti che potrebbero potenzialmente essere punti di flesso.
Passaggio 5
Sostituisci un valore dell'intervallo nella derivata seconda per determinare se è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 5.1
Sostituisci la variabile con nell'espressione.
Passaggio 5.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 5.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 5.2.1.1
Eleva alla potenza di .
Passaggio 5.2.1.2
Moltiplica per .
Passaggio 5.2.1.3
Moltiplica per .
Passaggio 5.2.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 5.2.2.1
Sottrai da .
Passaggio 5.2.2.2
Somma e .
Passaggio 5.2.3
La risposta finale è .
Passaggio 5.3
In corrispondenza di , la derivata seconda è . Poiché il valore è positivo, la derivata seconda è crescente sull'intervallo .
Crescente su perché
Crescente su perché
Passaggio 6
Sostituisci un valore dell'intervallo nella derivata seconda per determinare se è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 6.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 6.2.1.1
Eleva alla potenza di .
Passaggio 6.2.1.2
Moltiplica per .
Passaggio 6.2.1.3
Moltiplica per .
Passaggio 6.2.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 6.2.2.1
Sottrai da .
Passaggio 6.2.2.2
Somma e .
Passaggio 6.2.3
La risposta finale è .
Passaggio 6.3
Per , la derivata seconda è . Poiché il valore è negativo, la derivata seconda è decrescente nell'intervallo .
Decrescente su perché
Decrescente su perché
Passaggio 7
Sostituisci un valore dell'intervallo nella derivata seconda per determinare se è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 7.1
Sostituisci la variabile con nell'espressione.
Passaggio 7.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 7.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 7.2.1.1
Eleva alla potenza di .
Passaggio 7.2.1.2
Moltiplica per .
Passaggio 7.2.1.3
Moltiplica per .
Passaggio 7.2.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 7.2.2.1
Sottrai da .
Passaggio 7.2.2.2
Somma e .
Passaggio 7.2.3
La risposta finale è .
Passaggio 7.3
In corrispondenza di , la derivata seconda è . Poiché il valore è positivo, la derivata seconda è crescente sull'intervallo .
Crescente su perché
Crescente su perché
Passaggio 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Passaggio 9