Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2
Calcola .
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2.3
Moltiplica per .
Passaggio 1.1.3
Calcola .
Passaggio 1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.3.3
Moltiplica per .
Passaggio 1.1.4
Calcola .
Passaggio 1.1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.4.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.4.3
Moltiplica per .
Passaggio 1.2
Trova la derivata seconda.
Passaggio 1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.2
Calcola .
Passaggio 1.2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.2.3
Moltiplica per .
Passaggio 1.2.3
Calcola .
Passaggio 1.2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.3.3
Moltiplica per .
Passaggio 1.2.4
Calcola .
Passaggio 1.2.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.4.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.4.3
Moltiplica per .
Passaggio 1.3
La derivata seconda di rispetto a è .
Passaggio 2
Passaggio 2.1
Imposta la derivata seconda uguale a .
Passaggio 2.2
Scomponi da .
Passaggio 2.2.1
Scomponi da .
Passaggio 2.2.2
Scomponi da .
Passaggio 2.2.3
Scomponi da .
Passaggio 2.2.4
Scomponi da .
Passaggio 2.2.5
Scomponi da .
Passaggio 2.3
Dividi per ciascun termine in e semplifica.
Passaggio 2.3.1
Dividi per ciascun termine in .
Passaggio 2.3.2
Semplifica il lato sinistro.
Passaggio 2.3.2.1
Elimina il fattore comune di .
Passaggio 2.3.2.1.1
Elimina il fattore comune.
Passaggio 2.3.2.1.2
Dividi per .
Passaggio 2.3.3
Semplifica il lato destro.
Passaggio 2.3.3.1
Dividi per .
Passaggio 2.4
Utilizza la formula quadratica per trovare le soluzioni.
Passaggio 2.5
Sostituisci i valori , e nella formula quadratica e risolvi per .
Passaggio 2.6
Semplifica.
Passaggio 2.6.1
Semplifica il numeratore.
Passaggio 2.6.1.1
Eleva alla potenza di .
Passaggio 2.6.1.2
Moltiplica .
Passaggio 2.6.1.2.1
Moltiplica per .
Passaggio 2.6.1.2.2
Moltiplica per .
Passaggio 2.6.1.3
Sottrai da .
Passaggio 2.6.1.4
Riscrivi come .
Passaggio 2.6.1.4.1
Scomponi da .
Passaggio 2.6.1.4.2
Riscrivi come .
Passaggio 2.6.1.5
Estrai i termini dal radicale.
Passaggio 2.6.2
Moltiplica per .
Passaggio 2.6.3
Semplifica .
Passaggio 2.7
Semplifica l'espressione per risolvere per la porzione di .
Passaggio 2.7.1
Semplifica il numeratore.
Passaggio 2.7.1.1
Eleva alla potenza di .
Passaggio 2.7.1.2
Moltiplica .
Passaggio 2.7.1.2.1
Moltiplica per .
Passaggio 2.7.1.2.2
Moltiplica per .
Passaggio 2.7.1.3
Sottrai da .
Passaggio 2.7.1.4
Riscrivi come .
Passaggio 2.7.1.4.1
Scomponi da .
Passaggio 2.7.1.4.2
Riscrivi come .
Passaggio 2.7.1.5
Estrai i termini dal radicale.
Passaggio 2.7.2
Moltiplica per .
Passaggio 2.7.3
Semplifica .
Passaggio 2.7.4
Cambia da a .
Passaggio 2.8
Semplifica l'espressione per risolvere per la porzione di .
Passaggio 2.8.1
Semplifica il numeratore.
Passaggio 2.8.1.1
Eleva alla potenza di .
Passaggio 2.8.1.2
Moltiplica .
Passaggio 2.8.1.2.1
Moltiplica per .
Passaggio 2.8.1.2.2
Moltiplica per .
Passaggio 2.8.1.3
Sottrai da .
Passaggio 2.8.1.4
Riscrivi come .
Passaggio 2.8.1.4.1
Scomponi da .
Passaggio 2.8.1.4.2
Riscrivi come .
Passaggio 2.8.1.5
Estrai i termini dal radicale.
Passaggio 2.8.2
Moltiplica per .
Passaggio 2.8.3
Semplifica .
Passaggio 2.8.4
Cambia da a .
Passaggio 2.9
La risposta finale è la combinazione di entrambe le soluzioni.
Passaggio 3
Passaggio 3.1
Sostituisci in per trovare il valore di .
Passaggio 3.1.1
Sostituisci la variabile con nell'espressione.
Passaggio 3.1.2
Semplifica il risultato.
Passaggio 3.1.2.1
Semplifica ciascun termine.
Passaggio 3.1.2.1.1
Eleva alla potenza di .
Passaggio 3.1.2.1.2
Moltiplica per .
Passaggio 3.1.2.1.3
Eleva alla potenza di .
Passaggio 3.1.2.1.4
Moltiplica per .
Passaggio 3.1.2.1.5
Eleva alla potenza di .
Passaggio 3.1.2.1.6
Moltiplica per .
Passaggio 3.1.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 3.1.2.2.1
Sottrai da .
Passaggio 3.1.2.2.2
Somma e .
Passaggio 3.1.2.3
La risposta finale è .
Passaggio 3.2
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 3.3
Sostituisci in per trovare il valore di .
Passaggio 3.3.1
Sostituisci la variabile con nell'espressione.
Passaggio 3.3.2
Semplifica il risultato.
Passaggio 3.3.2.1
Semplifica ciascun termine.
Passaggio 3.3.2.1.1
Eleva alla potenza di .
Passaggio 3.3.2.1.2
Moltiplica per .
Passaggio 3.3.2.1.3
Eleva alla potenza di .
Passaggio 3.3.2.1.4
Moltiplica per .
Passaggio 3.3.2.1.5
Eleva alla potenza di .
Passaggio 3.3.2.1.6
Moltiplica per .
Passaggio 3.3.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 3.3.2.2.1
Sottrai da .
Passaggio 3.3.2.2.2
Somma e .
Passaggio 3.3.2.3
La risposta finale è .
Passaggio 3.4
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 3.5
Determina i punti che potrebbero essere punti di flesso.
Passaggio 4
Dividi in intervalli intorno ai punti che potrebbero potenzialmente essere punti di flesso.
Passaggio 5
Passaggio 5.1
Sostituisci la variabile con nell'espressione.
Passaggio 5.2
Semplifica il risultato.
Passaggio 5.2.1
Semplifica ciascun termine.
Passaggio 5.2.1.1
Eleva alla potenza di .
Passaggio 5.2.1.2
Moltiplica per .
Passaggio 5.2.1.3
Moltiplica per .
Passaggio 5.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 5.2.2.1
Sottrai da .
Passaggio 5.2.2.2
Somma e .
Passaggio 5.2.3
La risposta finale è .
Passaggio 5.3
In corrispondenza di , la derivata seconda è . Poiché il valore è positivo, la derivata seconda è crescente sull'intervallo .
Crescente su perché
Crescente su perché
Passaggio 6
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Passaggio 6.2.1
Semplifica ciascun termine.
Passaggio 6.2.1.1
Eleva alla potenza di .
Passaggio 6.2.1.2
Moltiplica per .
Passaggio 6.2.1.3
Moltiplica per .
Passaggio 6.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 6.2.2.1
Sottrai da .
Passaggio 6.2.2.2
Somma e .
Passaggio 6.2.3
La risposta finale è .
Passaggio 6.3
Per , la derivata seconda è . Poiché il valore è negativo, la derivata seconda è decrescente nell'intervallo .
Decrescente su perché
Decrescente su perché
Passaggio 7
Passaggio 7.1
Sostituisci la variabile con nell'espressione.
Passaggio 7.2
Semplifica il risultato.
Passaggio 7.2.1
Semplifica ciascun termine.
Passaggio 7.2.1.1
Eleva alla potenza di .
Passaggio 7.2.1.2
Moltiplica per .
Passaggio 7.2.1.3
Moltiplica per .
Passaggio 7.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 7.2.2.1
Sottrai da .
Passaggio 7.2.2.2
Somma e .
Passaggio 7.2.3
La risposta finale è .
Passaggio 7.3
In corrispondenza di , la derivata seconda è . Poiché il valore è positivo, la derivata seconda è crescente sull'intervallo .
Crescente su perché
Crescente su perché
Passaggio 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Passaggio 9