Calcolo Esempi

Trovare gli Asintoti f(x)=(x^3+8)/(x+2)
Passaggio 1
Trova dove l'espressione è indefinita.
Passaggio 2
Si hanno asintoti verticali nelle aree di discontinuità infinita.
Nessun asintoto verticale
Passaggio 3
Considera la funzione razionale dove è il grado del numeratore e è il grado del denominatore.
1. Se , l'asse x, , è l'asintoto orizzontale.
2. Se , l'asintoto orizzontale è la retta .
3. Se , non esiste alcun asintoto orizzontale (è presente un asintoto obliquo).
Passaggio 4
Trova e .
Passaggio 5
Poiché , non c'è nessun l'asintoto orizzontale.
Nessun asintoto orizzontale
Passaggio 6
Trova l'asintoto obliquo usando la divisione di polinomi.
Tocca per altri passaggi...
Passaggio 6.1
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 6.1.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 6.1.1.1
Riscrivi come .
Passaggio 6.1.1.2
Poiché entrambi i termini sono dei cubi perfetti, fattorizza usando la formula della somma di cubi, dove e .
Passaggio 6.1.1.3
Semplifica.
Tocca per altri passaggi...
Passaggio 6.1.1.3.1
Moltiplica per .
Passaggio 6.1.1.3.2
Eleva alla potenza di .
Passaggio 6.1.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.1.2.1
Elimina il fattore comune.
Passaggio 6.1.2.2
Dividi per .
Passaggio 6.2
L'asintoto obliquo è la porzione polinomiale del risultato della divisione in colonna.
Passaggio 7
Questo è l'insieme di tutti gli asintoti.
Nessun asintoto verticale
Nessun asintoto orizzontale
Asintoti obliqui:
Passaggio 8