Inserisci un problema...
Calcolo Esempi
Passaggio 1
Scrivi come funzione.
Passaggio 2
Passaggio 2.1
Differenzia.
Passaggio 2.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2
Calcola .
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.3
Moltiplica per .
Passaggio 2.3
Calcola .
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.3
Moltiplica per .
Passaggio 3
Passaggio 3.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.2
Calcola .
Passaggio 3.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.2.3
Moltiplica per .
Passaggio 3.3
Calcola .
Passaggio 3.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.3.3
Moltiplica per .
Passaggio 3.4
Differenzia usando la regola della costante.
Passaggio 3.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.4.2
Somma e .
Passaggio 4
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 5
Passaggio 5.1
Trova la derivata prima.
Passaggio 5.1.1
Differenzia.
Passaggio 5.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 5.1.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 5.1.2
Calcola .
Passaggio 5.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 5.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 5.1.2.3
Moltiplica per .
Passaggio 5.1.3
Calcola .
Passaggio 5.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 5.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 5.1.3.3
Moltiplica per .
Passaggio 5.2
La derivata prima di rispetto a è .
Passaggio 6
Passaggio 6.1
Poni la derivata prima uguale a .
Passaggio 6.2
Scomponi mediante raccoglimento.
Passaggio 6.2.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Passaggio 6.2.1.1
Scomponi da .
Passaggio 6.2.1.2
Riscrivi come più .
Passaggio 6.2.1.3
Applica la proprietà distributiva.
Passaggio 6.2.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Passaggio 6.2.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 6.2.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 6.2.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 6.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 6.4
Imposta uguale a e risolvi per .
Passaggio 6.4.1
Imposta uguale a .
Passaggio 6.4.2
Risolvi per .
Passaggio 6.4.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 6.4.2.2
Dividi per ciascun termine in e semplifica.
Passaggio 6.4.2.2.1
Dividi per ciascun termine in .
Passaggio 6.4.2.2.2
Semplifica il lato sinistro.
Passaggio 6.4.2.2.2.1
Elimina il fattore comune di .
Passaggio 6.4.2.2.2.1.1
Elimina il fattore comune.
Passaggio 6.4.2.2.2.1.2
Dividi per .
Passaggio 6.5
Imposta uguale a e risolvi per .
Passaggio 6.5.1
Imposta uguale a .
Passaggio 6.5.2
Somma a entrambi i lati dell'equazione.
Passaggio 6.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 7
Passaggio 7.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 8
Punti critici da calcolare.
Passaggio 9
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 10
Passaggio 10.1
Semplifica ciascun termine.
Passaggio 10.1.1
Elimina il fattore comune di .
Passaggio 10.1.1.1
Scomponi da .
Passaggio 10.1.1.2
Elimina il fattore comune.
Passaggio 10.1.1.3
Riscrivi l'espressione.
Passaggio 10.1.2
Moltiplica per .
Passaggio 10.2
Sottrai da .
Passaggio 11
è un massimo locale perché il valore della derivata seconda è negativo. Ciò si definisce test della derivata seconda.
è un massimo locale
Passaggio 12
Passaggio 12.1
Sostituisci la variabile con nell'espressione.
Passaggio 12.2
Semplifica il risultato.
Passaggio 12.2.1
Semplifica ciascun termine.
Passaggio 12.2.1.1
Applica la regola del prodotto a .
Passaggio 12.2.1.2
Eleva alla potenza di .
Passaggio 12.2.1.3
Eleva alla potenza di .
Passaggio 12.2.1.4
Applica la regola del prodotto a .
Passaggio 12.2.1.5
Eleva alla potenza di .
Passaggio 12.2.1.6
Eleva alla potenza di .
Passaggio 12.2.1.7
Moltiplica .
Passaggio 12.2.1.7.1
e .
Passaggio 12.2.1.7.2
Moltiplica per .
Passaggio 12.2.1.8
Sposta il negativo davanti alla frazione.
Passaggio 12.2.1.9
Moltiplica .
Passaggio 12.2.1.9.1
e .
Passaggio 12.2.1.9.2
Moltiplica per .
Passaggio 12.2.2
Trova il comune denominatore.
Passaggio 12.2.2.1
Moltiplica per .
Passaggio 12.2.2.2
Moltiplica per .
Passaggio 12.2.2.3
Moltiplica per .
Passaggio 12.2.2.4
Moltiplica per .
Passaggio 12.2.2.5
Riordina i fattori di .
Passaggio 12.2.2.6
Moltiplica per .
Passaggio 12.2.2.7
Moltiplica per .
Passaggio 12.2.3
Riduci i numeratori su un comune denominatore.
Passaggio 12.2.4
Semplifica ciascun termine.
Passaggio 12.2.4.1
Moltiplica per .
Passaggio 12.2.4.2
Moltiplica per .
Passaggio 12.2.5
Semplifica aggiungendo e sottraendo.
Passaggio 12.2.5.1
Sottrai da .
Passaggio 12.2.5.2
Somma e .
Passaggio 12.2.6
La risposta finale è .
Passaggio 13
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 14
Passaggio 14.1
Moltiplica per .
Passaggio 14.2
Sottrai da .
Passaggio 15
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 16
Passaggio 16.1
Sostituisci la variabile con nell'espressione.
Passaggio 16.2
Semplifica il risultato.
Passaggio 16.2.1
Semplifica ciascun termine.
Passaggio 16.2.1.1
Eleva alla potenza di .
Passaggio 16.2.1.2
Eleva alla potenza di .
Passaggio 16.2.1.3
Moltiplica per .
Passaggio 16.2.1.4
Moltiplica per .
Passaggio 16.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 16.2.2.1
Sottrai da .
Passaggio 16.2.2.2
Somma e .
Passaggio 16.2.3
La risposta finale è .
Passaggio 17
Questi sono gli estremi locali per .
è un massimo locale
è un minimo locale
Passaggio 18