Calcolo Esempi

Trova l'Integrale (e^(-x)+4e^(2x))dx
Passaggio 1
Rimuovi le parentesi.
Passaggio 2
Dividi il singolo integrale in più integrali.
Passaggio 3
Sia . Allora , quindi . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 3.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 3.1.1
Differenzia .
Passaggio 3.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.1.4
Moltiplica per .
Passaggio 3.2
Riscrivi il problema usando e .
Passaggio 4
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 5
L'integrale di rispetto a è .
Passaggio 6
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 7
Sia . Allora , quindi . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 7.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 7.1.1
Differenzia .
Passaggio 7.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 7.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 7.1.4
Moltiplica per .
Passaggio 7.2
Riscrivi il problema usando e .
Passaggio 8
e .
Passaggio 9
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 10
Semplifica.
Tocca per altri passaggi...
Passaggio 10.1
e .
Passaggio 10.2
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 10.2.1
Scomponi da .
Passaggio 10.2.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 10.2.2.1
Scomponi da .
Passaggio 10.2.2.2
Elimina il fattore comune.
Passaggio 10.2.2.3
Riscrivi l'espressione.
Passaggio 10.2.2.4
Dividi per .
Passaggio 11
L'integrale di rispetto a è .
Passaggio 12
Semplifica.
Passaggio 13
Sostituisci al posto di ogni variabile di integrazione per sostituzione.
Tocca per altri passaggi...
Passaggio 13.1
Sostituisci tutte le occorrenze di con .
Passaggio 13.2
Sostituisci tutte le occorrenze di con .