Calcolo Esempi

Trovare Dove è Crescente/Decrescente Usando le Derivate f(x)=(x^3)/4-3x
Passaggio 1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2.3
e .
Passaggio 1.1.2.4
e .
Passaggio 1.1.3
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.3.3
Moltiplica per .
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Somma a entrambi i lati dell'equazione.
Passaggio 2.3
Moltiplica entrambi i lati dell'equazione per .
Passaggio 2.4
Semplifica entrambi i lati dell'equazione.
Tocca per altri passaggi...
Passaggio 2.4.1
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.4.1.1
Semplifica .
Tocca per altri passaggi...
Passaggio 2.4.1.1.1
Combina.
Passaggio 2.4.1.1.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.4.1.1.2.1
Elimina il fattore comune.
Passaggio 2.4.1.1.2.2
Riscrivi l'espressione.
Passaggio 2.4.1.1.3
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.4.1.1.3.1
Elimina il fattore comune.
Passaggio 2.4.1.1.3.2
Dividi per .
Passaggio 2.4.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.4.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.4.2.1.1
Elimina il fattore comune.
Passaggio 2.4.2.1.2
Riscrivi l'espressione.
Passaggio 2.5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 2.6
Semplifica .
Tocca per altri passaggi...
Passaggio 2.6.1
Riscrivi come .
Passaggio 2.6.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 2.7
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 2.7.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 2.7.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 2.7.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 3
I valori che rendono la derivata uguale a sono .
Passaggio 4
Dividi in intervalli separati intorno ai valori che rendono la derivata o indefinita.
Passaggio 5
Sostituisci un valore dell'intervallo nella derivata per determinare se la funzione è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 5.1
Sostituisci la variabile con nell'espressione.
Passaggio 5.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 5.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 5.2.1.1
Eleva alla potenza di .
Passaggio 5.2.1.2
Moltiplica per .
Passaggio 5.2.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 5.2.3
e .
Passaggio 5.2.4
Riduci i numeratori su un comune denominatore.
Passaggio 5.2.5
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 5.2.5.1
Moltiplica per .
Passaggio 5.2.5.2
Sottrai da .
Passaggio 5.2.6
La risposta finale è .
Passaggio 5.3
In corrispondenza di la derivata è . Poiché il valore è positivo, la funzione è crescente su .
Crescente su perché
Crescente su perché
Passaggio 6
Sostituisci un valore dell'intervallo nella derivata per determinare se la funzione è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 6.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 6.2.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 6.2.1.2
Moltiplica per .
Passaggio 6.2.1.3
Dividi per .
Passaggio 6.2.2
Sottrai da .
Passaggio 6.2.3
La risposta finale è .
Passaggio 6.3
In corrispondenza di la derivata è . Poiché il valore è negativo, la funzione è decrescente su .
Decrescente su perché
Decrescente su perché
Passaggio 7
Sostituisci un valore dell'intervallo nella derivata per determinare se la funzione è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 7.1
Sostituisci la variabile con nell'espressione.
Passaggio 7.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 7.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 7.2.1.1
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 7.2.1.1.1
Moltiplica per .
Tocca per altri passaggi...
Passaggio 7.2.1.1.1.1
Eleva alla potenza di .
Passaggio 7.2.1.1.1.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 7.2.1.1.2
Somma e .
Passaggio 7.2.1.2
Eleva alla potenza di .
Passaggio 7.2.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 7.2.3
e .
Passaggio 7.2.4
Riduci i numeratori su un comune denominatore.
Passaggio 7.2.5
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 7.2.5.1
Moltiplica per .
Passaggio 7.2.5.2
Sottrai da .
Passaggio 7.2.6
La risposta finale è .
Passaggio 7.3
In corrispondenza di la derivata è . Poiché il valore è positivo, la funzione è crescente su .
Crescente su perché
Crescente su perché
Passaggio 8
Elenca gli intervalli in cui la funzione è crescente e decrescente.
Crescente su:
Decrescente su:
Passaggio 9