Calcolo Esempi

求2nd的导数 p(t)=(2000t)/(4t+75)
Passaggio 1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2
Differenzia usando la regola del quoziente, che indica che è dove e .
Passaggio 1.3
Differenzia.
Tocca per altri passaggi...
Passaggio 1.3.1
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.2
Moltiplica per .
Passaggio 1.3.3
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.5
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.6
Moltiplica per .
Passaggio 1.3.7
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.8
Semplifica i termini.
Tocca per altri passaggi...
Passaggio 1.3.8.1
Somma e .
Passaggio 1.3.8.2
Moltiplica per .
Passaggio 1.3.8.3
Sottrai da .
Passaggio 1.3.8.4
Somma e .
Passaggio 1.3.8.5
e .
Passaggio 1.3.8.6
Moltiplica per .
Passaggio 2
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 2.1
Differenzia usando la regola multipla costante.
Tocca per altri passaggi...
Passaggio 2.1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.2
Applica le regole di base degli esponenti.
Tocca per altri passaggi...
Passaggio 2.1.2.1
Riscrivi come .
Passaggio 2.1.2.2
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 2.1.2.2.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 2.1.2.2.2
Moltiplica per .
Passaggio 2.2
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 2.2.1
Per applicare la regola della catena, imposta come .
Passaggio 2.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.3
Differenzia.
Tocca per altri passaggi...
Passaggio 2.3.1
Moltiplica per .
Passaggio 2.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.3.5
Moltiplica per .
Passaggio 2.3.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.7
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 2.3.7.1
Somma e .
Passaggio 2.3.7.2
Moltiplica per .
Passaggio 2.4
Semplifica.
Tocca per altri passaggi...
Passaggio 2.4.1
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 2.4.2
Raccogli i termini.
Tocca per altri passaggi...
Passaggio 2.4.2.1
e .
Passaggio 2.4.2.2
Sposta il negativo davanti alla frazione.
Passaggio 3
Trova la derivata terza.
Tocca per altri passaggi...
Passaggio 3.1
Differenzia usando la regola multipla costante.
Tocca per altri passaggi...
Passaggio 3.1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.1.2
Applica le regole di base degli esponenti.
Tocca per altri passaggi...
Passaggio 3.1.2.1
Riscrivi come .
Passaggio 3.1.2.2
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 3.1.2.2.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 3.1.2.2.2
Moltiplica per .
Passaggio 3.2
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 3.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 3.3
Differenzia.
Tocca per altri passaggi...
Passaggio 3.3.1
Moltiplica per .
Passaggio 3.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 3.3.5
Moltiplica per .
Passaggio 3.3.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3.7
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 3.3.7.1
Somma e .
Passaggio 3.3.7.2
Moltiplica per .
Passaggio 3.4
Semplifica.
Tocca per altri passaggi...
Passaggio 3.4.1
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 3.4.2
e .
Passaggio 4
Trova la derivata quarta.
Tocca per altri passaggi...
Passaggio 4.1
Differenzia usando la regola multipla costante.
Tocca per altri passaggi...
Passaggio 4.1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2
Applica le regole di base degli esponenti.
Tocca per altri passaggi...
Passaggio 4.1.2.1
Riscrivi come .
Passaggio 4.1.2.2
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 4.1.2.2.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 4.1.2.2.2
Moltiplica per .
Passaggio 4.2
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 4.2.1
Per applicare la regola della catena, imposta come .
Passaggio 4.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 4.3
Differenzia.
Tocca per altri passaggi...
Passaggio 4.3.1
Moltiplica per .
Passaggio 4.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.3.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.3.5
Moltiplica per .
Passaggio 4.3.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.3.7
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 4.3.7.1
Somma e .
Passaggio 4.3.7.2
Moltiplica per .
Passaggio 4.4
Semplifica.
Tocca per altri passaggi...
Passaggio 4.4.1
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 4.4.2
Raccogli i termini.
Tocca per altri passaggi...
Passaggio 4.4.2.1
e .
Passaggio 4.4.2.2
Sposta il negativo davanti alla frazione.
Passaggio 5
La derivata quarta di rispetto a è .