Calcolo Esempi

Trovare i Punti Critici f(x)=x/(x^2-4)
Passaggio 1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1
Differenzia usando la regola del quoziente, che indica che è dove e .
Passaggio 1.1.2
Differenzia.
Tocca per altri passaggi...
Passaggio 1.1.2.1
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2.2
Moltiplica per .
Passaggio 1.1.2.3
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.6
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 1.1.2.6.1
Somma e .
Passaggio 1.1.2.6.2
Moltiplica per .
Passaggio 1.1.3
Eleva alla potenza di .
Passaggio 1.1.4
Eleva alla potenza di .
Passaggio 1.1.5
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 1.1.6
Somma e .
Passaggio 1.1.7
Sottrai da .
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Poni il numeratore uguale a zero.
Passaggio 2.3
Risolvi l'equazione per .
Tocca per altri passaggi...
Passaggio 2.3.1
Somma a entrambi i lati dell'equazione.
Passaggio 2.3.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 2.3.2.1
Dividi per ciascun termine in .
Passaggio 2.3.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.3.2.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 2.3.2.2.2
Dividi per .
Passaggio 2.3.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.3.2.3.1
Dividi per .
Passaggio 2.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 2.3.4
Semplifica .
Tocca per altri passaggi...
Passaggio 2.3.4.1
Riscrivi come .
Passaggio 2.3.4.2
Riscrivi come .
Passaggio 2.3.4.3
Riscrivi come .
Passaggio 2.3.4.4
Riscrivi come .
Passaggio 2.3.4.5
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 2.3.4.6
Sposta alla sinistra di .
Passaggio 2.3.5
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 2.3.5.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 2.3.5.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 2.3.5.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 3
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 3.1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 3.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.2.1
Scomponi il primo membro dell'equazione.
Tocca per altri passaggi...
Passaggio 3.2.1.1
Riscrivi come .
Passaggio 3.2.1.2
Poiché entrambi i termini sono dei quadrati perfetti, fattorizza utilizzando la formula della differenza di quadrati, dove e .
Passaggio 3.2.1.3
Applica la regola del prodotto a .
Passaggio 3.2.2
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 3.2.3
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 3.2.3.1
Imposta uguale a .
Passaggio 3.2.3.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.2.3.2.1
Poni uguale a .
Passaggio 3.2.3.2.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.2.4
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 3.2.4.1
Imposta uguale a .
Passaggio 3.2.4.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.2.4.2.1
Poni uguale a .
Passaggio 3.2.4.2.2
Somma a entrambi i lati dell'equazione.
Passaggio 3.2.5
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 3.3
L'equazione è indefinita dove il denominatore è uguale a , l'argomento di una radice quadrata è minore di o l'argomento di un logaritmo è minore di o uguale a .
Passaggio 4
Risolvi per ciascun valore di dove la derivata è o indefinita.
Tocca per altri passaggi...
Passaggio 4.1
Calcola per .
Tocca per altri passaggi...
Passaggio 4.1.1
Sostituisci per .
Passaggio 4.1.2
Semplifica.
Tocca per altri passaggi...
Passaggio 4.1.2.1
Eleva alla potenza di .
Passaggio 4.1.2.2
Sottrai da .
Passaggio 4.1.2.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Indefinito
Indefinito
Passaggio 4.2
Calcola per .
Tocca per altri passaggi...
Passaggio 4.2.1
Sostituisci per .
Passaggio 4.2.2
Semplifica.
Tocca per altri passaggi...
Passaggio 4.2.2.1
Eleva alla potenza di .
Passaggio 4.2.2.2
Sottrai da .
Passaggio 4.2.2.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Indefinito
Indefinito
Indefinito
Passaggio 5
Non ci sono valori di nel dominio del problema originale per cui la derivata sia o indefinita.
Nessun punto critico trovato