Calcolo Esempi

Trovare i Punti Critici sin(x)^2
Passaggio 1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 1.1.1.1
Per applicare la regola della catena, imposta come .
Passaggio 1.1.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.1.2
La derivata di rispetto a è .
Passaggio 1.1.3
Semplifica.
Tocca per altri passaggi...
Passaggio 1.1.3.1
Riordina i fattori di .
Passaggio 1.1.3.2
Riordina e .
Passaggio 1.1.3.3
Riordina e .
Passaggio 1.1.3.4
Applica l'identità a doppio angolo del seno.
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Trova il valore dell'incognita corrispondente all'inverso del seno presente nell'equazione assegnata.
Passaggio 2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.3.1
Il valore esatto di è .
Passaggio 2.4
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 2.4.1
Dividi per ciascun termine in .
Passaggio 2.4.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.4.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.4.2.1.1
Elimina il fattore comune.
Passaggio 2.4.2.1.2
Dividi per .
Passaggio 2.4.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.4.3.1
Dividi per .
Passaggio 2.5
La funzione del seno è positiva nel primo e nel secondo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel secondo quadrante.
Passaggio 2.6
Risolvi per .
Tocca per altri passaggi...
Passaggio 2.6.1
Semplifica.
Tocca per altri passaggi...
Passaggio 2.6.1.1
Moltiplica per .
Passaggio 2.6.1.2
Somma e .
Passaggio 2.6.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 2.6.2.1
Dividi per ciascun termine in .
Passaggio 2.6.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.6.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.6.2.2.1.1
Elimina il fattore comune.
Passaggio 2.6.2.2.1.2
Dividi per .
Passaggio 2.7
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 2.7.1
Si può calcolare il periodo della funzione usando .
Passaggio 2.7.2
Sostituisci con nella formula per il periodo.
Passaggio 2.7.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 2.7.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.7.4.1
Elimina il fattore comune.
Passaggio 2.7.4.2
Dividi per .
Passaggio 2.8
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
Passaggio 2.9
Consolida le risposte.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 3
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 3.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 4
Risolvi per ciascun valore di dove la derivata è o indefinita.
Tocca per altri passaggi...
Passaggio 4.1
Calcola per .
Tocca per altri passaggi...
Passaggio 4.1.1
Sostituisci a .
Passaggio 4.1.2
Semplifica.
Tocca per altri passaggi...
Passaggio 4.1.2.1
Il valore esatto di è .
Passaggio 4.1.2.2
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 4.2
Calcola per .
Tocca per altri passaggi...
Passaggio 4.2.1
Sostituisci a .
Passaggio 4.2.2
Semplifica.
Tocca per altri passaggi...
Passaggio 4.2.2.1
Il valore esatto di è .
Passaggio 4.2.2.2
Uno elevato a qualsiasi potenza è uno.
Passaggio 4.3
Elenca tutti i punti.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 5