Calcolo Esempi

Trovare il Max e Min Assoluto nell'Intervallo f(x)=x^3-12x , (0,4)
,
Passaggio 1
Trova i punti critici.
Tocca per altri passaggi...
Passaggio 1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1.1
Differenzia.
Tocca per altri passaggi...
Passaggio 1.1.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.1.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.1.2.3
Moltiplica per .
Passaggio 1.1.2
La derivata prima di rispetto a è .
Passaggio 1.2
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 1.2.1
Poni la derivata prima uguale a .
Passaggio 1.2.2
Somma a entrambi i lati dell'equazione.
Passaggio 1.2.3
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 1.2.3.1
Dividi per ciascun termine in .
Passaggio 1.2.3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 1.2.3.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.2.3.2.1.1
Elimina il fattore comune.
Passaggio 1.2.3.2.1.2
Dividi per .
Passaggio 1.2.3.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.2.3.3.1
Dividi per .
Passaggio 1.2.4
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 1.2.5
Semplifica .
Tocca per altri passaggi...
Passaggio 1.2.5.1
Riscrivi come .
Passaggio 1.2.5.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 1.2.6
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 1.2.6.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 1.2.6.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 1.2.6.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 1.3
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 1.3.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 1.4
Risolvi per ciascun valore di dove la derivata è o indefinita.
Tocca per altri passaggi...
Passaggio 1.4.1
Calcola per .
Tocca per altri passaggi...
Passaggio 1.4.1.1
Sostituisci a .
Passaggio 1.4.1.2
Semplifica.
Tocca per altri passaggi...
Passaggio 1.4.1.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.4.1.2.1.1
Eleva alla potenza di .
Passaggio 1.4.1.2.1.2
Moltiplica per .
Passaggio 1.4.1.2.2
Sottrai da .
Passaggio 1.4.2
Calcola per .
Tocca per altri passaggi...
Passaggio 1.4.2.1
Sostituisci a .
Passaggio 1.4.2.2
Semplifica.
Tocca per altri passaggi...
Passaggio 1.4.2.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.4.2.2.1.1
Eleva alla potenza di .
Passaggio 1.4.2.2.1.2
Moltiplica per .
Passaggio 1.4.2.2.2
Somma e .
Passaggio 1.4.3
Elenca tutti i punti.
Passaggio 2
Escludi i punti che non si trovano sull'intervallo.
Passaggio 3
Usa il test della derivata prima per determinare quale punto può essere il massimo o il minimo.
Tocca per altri passaggi...
Passaggio 3.1
Dividi in intervalli separati intorno ai valori che rendono la derivata prima o indefinita.
Passaggio 3.2
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Tocca per altri passaggi...
Passaggio 3.2.1
Sostituisci la variabile con nell'espressione.
Passaggio 3.2.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 3.2.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 3.2.2.1.1
Eleva alla potenza di .
Passaggio 3.2.2.1.2
Moltiplica per .
Passaggio 3.2.2.2
Sottrai da .
Passaggio 3.2.2.3
La risposta finale è .
Passaggio 3.3
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Tocca per altri passaggi...
Passaggio 3.3.1
Sostituisci la variabile con nell'espressione.
Passaggio 3.3.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 3.3.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 3.3.2.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 3.3.2.1.2
Moltiplica per .
Passaggio 3.3.2.2
Sottrai da .
Passaggio 3.3.2.3
La risposta finale è .
Passaggio 3.4
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Tocca per altri passaggi...
Passaggio 3.4.1
Sostituisci la variabile con nell'espressione.
Passaggio 3.4.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 3.4.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 3.4.2.1.1
Eleva alla potenza di .
Passaggio 3.4.2.1.2
Moltiplica per .
Passaggio 3.4.2.2
Sottrai da .
Passaggio 3.4.2.3
La risposta finale è .
Passaggio 3.5
Dato che la derivata prima ha cambiato segno da positivo a negativo intorno a , allora è un massimo locale.
è un massimo locale
Passaggio 3.6
Dato che la derivata prima ha cambiato segno da negativo a positivo intorno a , allora è un minimo locale.
è un minimo locale
Passaggio 3.7
Questi sono gli estremi locali per .
è un massimo locale
è un minimo locale
è un massimo locale
è un minimo locale
Passaggio 4
Confronta i valori trovati per ciascun valore di per determinare il massimo e il minimo assoluti su un intervallo dato. Il massimo comparirà in corrispondenza del valore più alto, mentre il minimo comparirà in corrispondenza del valore più basso.
Nessun massimo assoluto
Minimo assoluto:
Passaggio 5