Calcolo Esempi

Trovare Dove è Crescente/Decrescente Usando le Derivate f(x)=x^4-18x^2
Passaggio 1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1
Differenzia.
Tocca per altri passaggi...
Passaggio 1.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.3
Moltiplica per .
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Scomponi il primo membro dell'equazione.
Tocca per altri passaggi...
Passaggio 2.2.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 2.2.1.1
Scomponi da .
Passaggio 2.2.1.2
Scomponi da .
Passaggio 2.2.1.3
Scomponi da .
Passaggio 2.2.2
Riscrivi come .
Passaggio 2.2.3
Scomponi.
Tocca per altri passaggi...
Passaggio 2.2.3.1
Poiché entrambi i termini sono dei quadrati perfetti, fattorizza usando la formula della differenza di quadrati, dove e .
Passaggio 2.2.3.2
Rimuovi le parentesi non necessarie.
Passaggio 2.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 2.4
Imposta uguale a .
Passaggio 2.5
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 2.5.1
Imposta uguale a .
Passaggio 2.5.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.6
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 2.6.1
Imposta uguale a .
Passaggio 2.6.2
Somma a entrambi i lati dell'equazione.
Passaggio 2.7
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 3
I valori che rendono la derivata uguale a sono .
Passaggio 4
Dividi in intervalli separati intorno ai valori che rendono la derivata o indefinita.
Passaggio 5
Sostituisci un valore dell'intervallo nella derivata per determinare se la funzione è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 5.1
Sostituisci la variabile con nell'espressione.
Passaggio 5.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 5.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 5.2.1.1
Eleva alla potenza di .
Passaggio 5.2.1.2
Moltiplica per .
Passaggio 5.2.1.3
Moltiplica per .
Passaggio 5.2.2
Somma e .
Passaggio 5.2.3
La risposta finale è .
Passaggio 5.3
In corrispondenza di la derivata è . Poiché il valore è negativo, la funzione è decrescente su .
Decrescente su perché
Decrescente su perché
Passaggio 6
Sostituisci un valore dell'intervallo nella derivata per determinare se la funzione è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 6.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 6.2.1.1
Usa la regola della potenza per distribuire l'esponente.
Tocca per altri passaggi...
Passaggio 6.2.1.1.1
Applica la regola del prodotto a .
Passaggio 6.2.1.1.2
Applica la regola del prodotto a .
Passaggio 6.2.1.2
Eleva alla potenza di .
Passaggio 6.2.1.3
Eleva alla potenza di .
Passaggio 6.2.1.4
Eleva alla potenza di .
Passaggio 6.2.1.5
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.2.1.5.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 6.2.1.5.2
Scomponi da .
Passaggio 6.2.1.5.3
Elimina il fattore comune.
Passaggio 6.2.1.5.4
Riscrivi l'espressione.
Passaggio 6.2.1.6
Sposta il negativo davanti alla frazione.
Passaggio 6.2.1.7
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.2.1.7.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 6.2.1.7.2
Scomponi da .
Passaggio 6.2.1.7.3
Elimina il fattore comune.
Passaggio 6.2.1.7.4
Riscrivi l'espressione.
Passaggio 6.2.1.8
Moltiplica per .
Passaggio 6.2.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 6.2.3
e .
Passaggio 6.2.4
Riduci i numeratori su un comune denominatore.
Passaggio 6.2.5
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 6.2.5.1
Moltiplica per .
Passaggio 6.2.5.2
Somma e .
Passaggio 6.2.6
La risposta finale è .
Passaggio 6.3
In corrispondenza di la derivata è . Poiché il valore è positivo, la funzione è crescente su .
Crescente su perché
Crescente su perché
Passaggio 7
Sostituisci un valore dell'intervallo nella derivata per determinare se la funzione è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 7.1
Sostituisci la variabile con nell'espressione.
Passaggio 7.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 7.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 7.2.1.1
Applica la regola del prodotto a .
Passaggio 7.2.1.2
Eleva alla potenza di .
Passaggio 7.2.1.3
Eleva alla potenza di .
Passaggio 7.2.1.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 7.2.1.4.1
Scomponi da .
Passaggio 7.2.1.4.2
Elimina il fattore comune.
Passaggio 7.2.1.4.3
Riscrivi l'espressione.
Passaggio 7.2.1.5
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 7.2.1.5.1
Scomponi da .
Passaggio 7.2.1.5.2
Elimina il fattore comune.
Passaggio 7.2.1.5.3
Riscrivi l'espressione.
Passaggio 7.2.1.6
Moltiplica per .
Passaggio 7.2.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 7.2.3
e .
Passaggio 7.2.4
Riduci i numeratori su un comune denominatore.
Passaggio 7.2.5
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 7.2.5.1
Moltiplica per .
Passaggio 7.2.5.2
Sottrai da .
Passaggio 7.2.6
Sposta il negativo davanti alla frazione.
Passaggio 7.2.7
La risposta finale è .
Passaggio 7.3
In corrispondenza di la derivata è . Poiché il valore è negativo, la funzione è decrescente su .
Decrescente su perché
Decrescente su perché
Passaggio 8
Sostituisci un valore dell'intervallo nella derivata per determinare se la funzione è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 8.1
Sostituisci la variabile con nell'espressione.
Passaggio 8.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 8.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 8.2.1.1
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 8.2.1.1.1
Moltiplica per .
Tocca per altri passaggi...
Passaggio 8.2.1.1.1.1
Eleva alla potenza di .
Passaggio 8.2.1.1.1.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 8.2.1.1.2
Somma e .
Passaggio 8.2.1.2
Eleva alla potenza di .
Passaggio 8.2.1.3
Moltiplica per .
Passaggio 8.2.2
Sottrai da .
Passaggio 8.2.3
La risposta finale è .
Passaggio 8.3
In corrispondenza di la derivata è . Poiché il valore è positivo, la funzione è crescente su .
Crescente su perché
Crescente su perché
Passaggio 9
Elenca gli intervalli in cui la funzione è crescente e decrescente.
Crescente su:
Decrescente su:
Passaggio 10