Inserisci un problema...
Calcolo Esempi
Passaggio 1
Scrivi come funzione.
Passaggio 2
Passaggio 2.1
Trova la derivata prima.
Passaggio 2.1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.2
Differenzia usando la regola del quoziente, che indica che è dove e .
Passaggio 2.1.3
Differenzia.
Passaggio 2.1.3.1
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.1.3.2
Moltiplica per .
Passaggio 2.1.3.3
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.1.3.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.1.3.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.3.6
Semplifica l'espressione.
Passaggio 2.1.3.6.1
Somma e .
Passaggio 2.1.3.6.2
Moltiplica per .
Passaggio 2.1.4
Eleva alla potenza di .
Passaggio 2.1.5
Eleva alla potenza di .
Passaggio 2.1.6
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 2.1.7
Somma e .
Passaggio 2.1.8
Sottrai da .
Passaggio 2.1.9
e .
Passaggio 2.1.10
Semplifica.
Passaggio 2.1.10.1
Applica la proprietà distributiva.
Passaggio 2.1.10.2
Semplifica ciascun termine.
Passaggio 2.1.10.2.1
Moltiplica per .
Passaggio 2.1.10.2.2
Moltiplica per .
Passaggio 2.2
Trova la derivata seconda.
Passaggio 2.2.1
Differenzia usando la regola del quoziente, che indica che è dove e .
Passaggio 2.2.2
Differenzia.
Passaggio 2.2.2.1
Moltiplica gli esponenti in .
Passaggio 2.2.2.1.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 2.2.2.1.2
Moltiplica per .
Passaggio 2.2.2.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2.2.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.2.2.5
Moltiplica per .
Passaggio 2.2.2.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2.7
Somma e .
Passaggio 2.2.3
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 2.2.3.1
Per applicare la regola della catena, imposta come .
Passaggio 2.2.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.2.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.2.4
Differenzia.
Passaggio 2.2.4.1
Moltiplica per .
Passaggio 2.2.4.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2.4.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.2.4.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.4.5
Semplifica l'espressione.
Passaggio 2.2.4.5.1
Somma e .
Passaggio 2.2.4.5.2
Sposta alla sinistra di .
Passaggio 2.2.4.5.3
Moltiplica per .
Passaggio 2.2.5
Semplifica.
Passaggio 2.2.5.1
Applica la proprietà distributiva.
Passaggio 2.2.5.2
Applica la proprietà distributiva.
Passaggio 2.2.5.3
Semplifica il numeratore.
Passaggio 2.2.5.3.1
Semplifica ciascun termine.
Passaggio 2.2.5.3.1.1
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 2.2.5.3.1.2
Riscrivi come .
Passaggio 2.2.5.3.1.3
Espandi usando il metodo FOIL.
Passaggio 2.2.5.3.1.3.1
Applica la proprietà distributiva.
Passaggio 2.2.5.3.1.3.2
Applica la proprietà distributiva.
Passaggio 2.2.5.3.1.3.3
Applica la proprietà distributiva.
Passaggio 2.2.5.3.1.4
Semplifica e combina i termini simili.
Passaggio 2.2.5.3.1.4.1
Semplifica ciascun termine.
Passaggio 2.2.5.3.1.4.1.1
Moltiplica per sommando gli esponenti.
Passaggio 2.2.5.3.1.4.1.1.1
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 2.2.5.3.1.4.1.1.2
Somma e .
Passaggio 2.2.5.3.1.4.1.2
Sposta alla sinistra di .
Passaggio 2.2.5.3.1.4.1.3
Riscrivi come .
Passaggio 2.2.5.3.1.4.1.4
Riscrivi come .
Passaggio 2.2.5.3.1.4.1.5
Moltiplica per .
Passaggio 2.2.5.3.1.4.2
Sottrai da .
Passaggio 2.2.5.3.1.5
Applica la proprietà distributiva.
Passaggio 2.2.5.3.1.6
Semplifica.
Passaggio 2.2.5.3.1.6.1
Moltiplica per .
Passaggio 2.2.5.3.1.6.2
Moltiplica per .
Passaggio 2.2.5.3.1.7
Applica la proprietà distributiva.
Passaggio 2.2.5.3.1.8
Semplifica.
Passaggio 2.2.5.3.1.8.1
Moltiplica per sommando gli esponenti.
Passaggio 2.2.5.3.1.8.1.1
Sposta .
Passaggio 2.2.5.3.1.8.1.2
Moltiplica per .
Passaggio 2.2.5.3.1.8.1.2.1
Eleva alla potenza di .
Passaggio 2.2.5.3.1.8.1.2.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 2.2.5.3.1.8.1.3
Somma e .
Passaggio 2.2.5.3.1.8.2
Moltiplica per sommando gli esponenti.
Passaggio 2.2.5.3.1.8.2.1
Sposta .
Passaggio 2.2.5.3.1.8.2.2
Moltiplica per .
Passaggio 2.2.5.3.1.8.2.2.1
Eleva alla potenza di .
Passaggio 2.2.5.3.1.8.2.2.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 2.2.5.3.1.8.2.3
Somma e .
Passaggio 2.2.5.3.1.9
Semplifica ciascun termine.
Passaggio 2.2.5.3.1.9.1
Moltiplica per .
Passaggio 2.2.5.3.1.9.2
Moltiplica per .
Passaggio 2.2.5.3.1.10
Semplifica ciascun termine.
Passaggio 2.2.5.3.1.10.1
Moltiplica per sommando gli esponenti.
Passaggio 2.2.5.3.1.10.1.1
Moltiplica per .
Passaggio 2.2.5.3.1.10.1.1.1
Eleva alla potenza di .
Passaggio 2.2.5.3.1.10.1.1.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 2.2.5.3.1.10.1.2
Somma e .
Passaggio 2.2.5.3.1.10.2
Riscrivi come .
Passaggio 2.2.5.3.1.11
Espandi usando il metodo FOIL.
Passaggio 2.2.5.3.1.11.1
Applica la proprietà distributiva.
Passaggio 2.2.5.3.1.11.2
Applica la proprietà distributiva.
Passaggio 2.2.5.3.1.11.3
Applica la proprietà distributiva.
Passaggio 2.2.5.3.1.12
Semplifica e combina i termini simili.
Passaggio 2.2.5.3.1.12.1
Semplifica ciascun termine.
Passaggio 2.2.5.3.1.12.1.1
Moltiplica per sommando gli esponenti.
Passaggio 2.2.5.3.1.12.1.1.1
Sposta .
Passaggio 2.2.5.3.1.12.1.1.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 2.2.5.3.1.12.1.1.3
Somma e .
Passaggio 2.2.5.3.1.12.1.2
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 2.2.5.3.1.12.1.3
Moltiplica per sommando gli esponenti.
Passaggio 2.2.5.3.1.12.1.3.1
Sposta .
Passaggio 2.2.5.3.1.12.1.3.2
Moltiplica per .
Passaggio 2.2.5.3.1.12.1.3.2.1
Eleva alla potenza di .
Passaggio 2.2.5.3.1.12.1.3.2.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 2.2.5.3.1.12.1.3.3
Somma e .
Passaggio 2.2.5.3.1.12.1.4
Moltiplica per .
Passaggio 2.2.5.3.1.12.1.5
Moltiplica per .
Passaggio 2.2.5.3.1.12.2
Somma e .
Passaggio 2.2.5.3.1.12.3
Somma e .
Passaggio 2.2.5.3.2
Somma e .
Passaggio 2.2.5.3.3
Sottrai da .
Passaggio 2.2.5.4
Semplifica il numeratore.
Passaggio 2.2.5.4.1
Scomponi da .
Passaggio 2.2.5.4.1.1
Scomponi da .
Passaggio 2.2.5.4.1.2
Scomponi da .
Passaggio 2.2.5.4.1.3
Scomponi da .
Passaggio 2.2.5.4.1.4
Scomponi da .
Passaggio 2.2.5.4.1.5
Scomponi da .
Passaggio 2.2.5.4.2
Riscrivi come .
Passaggio 2.2.5.4.3
Sia . Sostituisci tutte le occorrenze di con .
Passaggio 2.2.5.4.4
Scomponi usando il metodo AC.
Passaggio 2.2.5.4.4.1
Considera la forma . Trova una coppia di interi il cui prodotto è e la cui formula è . In questo caso, il cui prodotto è e la cui somma è .
Passaggio 2.2.5.4.4.2
Scrivi la forma fattorizzata utilizzando questi interi.
Passaggio 2.2.5.4.5
Sostituisci tutte le occorrenze di con .
Passaggio 2.2.5.4.6
Riscrivi come .
Passaggio 2.2.5.4.7
Poiché entrambi i termini sono dei quadrati perfetti, fattorizza utilizzando la formula della differenza di quadrati, dove e .
Passaggio 2.2.5.5
Semplifica il denominatore.
Passaggio 2.2.5.5.1
Riscrivi come .
Passaggio 2.2.5.5.2
Poiché entrambi i termini sono dei quadrati perfetti, fattorizza utilizzando la formula della differenza di quadrati, dove e .
Passaggio 2.2.5.5.3
Applica la regola del prodotto a .
Passaggio 2.2.5.6
Elimina il fattore comune di e .
Passaggio 2.2.5.6.1
Scomponi da .
Passaggio 2.2.5.6.2
Elimina i fattori comuni.
Passaggio 2.2.5.6.2.1
Scomponi da .
Passaggio 2.2.5.6.2.2
Elimina il fattore comune.
Passaggio 2.2.5.6.2.3
Riscrivi l'espressione.
Passaggio 2.2.5.7
Elimina il fattore comune di e .
Passaggio 2.2.5.7.1
Scomponi da .
Passaggio 2.2.5.7.2
Elimina i fattori comuni.
Passaggio 2.2.5.7.2.1
Scomponi da .
Passaggio 2.2.5.7.2.2
Elimina il fattore comune.
Passaggio 2.2.5.7.2.3
Riscrivi l'espressione.
Passaggio 2.3
La derivata seconda di rispetto a è .
Passaggio 3
Passaggio 3.1
Imposta la derivata seconda uguale a .
Passaggio 3.2
Poni il numeratore uguale a zero.
Passaggio 3.3
Risolvi l'equazione per .
Passaggio 3.3.1
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 3.3.2
Imposta uguale a .
Passaggio 3.3.3
Imposta uguale a e risolvi per .
Passaggio 3.3.3.1
Imposta uguale a .
Passaggio 3.3.3.2
Risolvi per .
Passaggio 3.3.3.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.3.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 3.3.3.2.3
Semplifica .
Passaggio 3.3.3.2.3.1
Riscrivi come .
Passaggio 3.3.3.2.3.2
Riscrivi come .
Passaggio 3.3.3.2.3.3
Riscrivi come .
Passaggio 3.3.3.2.4
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 3.3.3.2.4.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 3.3.3.2.4.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 3.3.3.2.4.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 3.3.4
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 4
Passaggio 4.1
Sostituisci in per trovare il valore di .
Passaggio 4.1.1
Sostituisci la variabile con nell'espressione.
Passaggio 4.1.2
Semplifica il risultato.
Passaggio 4.1.2.1
Moltiplica per .
Passaggio 4.1.2.2
Semplifica il denominatore.
Passaggio 4.1.2.2.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 4.1.2.2.2
Sottrai da .
Passaggio 4.1.2.3
Dividi per .
Passaggio 4.1.2.4
La risposta finale è .
Passaggio 4.2
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 5
Dividi in intervalli intorno ai punti che potrebbero potenzialmente essere punti di flesso.
Passaggio 6
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Passaggio 6.2.1
Semplifica il numeratore.
Passaggio 6.2.1.1
Moltiplica per .
Passaggio 6.2.1.2
Moltiplica per .
Passaggio 6.2.2
Semplifica il denominatore.
Passaggio 6.2.2.1
Somma e .
Passaggio 6.2.2.2
Sottrai da .
Passaggio 6.2.2.3
Eleva alla potenza di .
Passaggio 6.2.2.4
Eleva alla potenza di .
Passaggio 6.2.3
Semplifica l'espressione.
Passaggio 6.2.3.1
Moltiplica per .
Passaggio 6.2.3.2
Dividi per .
Passaggio 6.2.4
La risposta finale è .
Passaggio 6.3
In corrispondenza di , la derivata seconda è . Poiché il valore è positivo, la derivata seconda è crescente sull'intervallo .
Crescente su perché
Crescente su perché
Passaggio 7
Passaggio 7.1
Sostituisci la variabile con nell'espressione.
Passaggio 7.2
Semplifica il risultato.
Passaggio 7.2.1
Semplifica il numeratore.
Passaggio 7.2.1.1
Moltiplica per .
Passaggio 7.2.1.2
Moltiplica per .
Passaggio 7.2.2
Semplifica il denominatore.
Passaggio 7.2.2.1
Somma e .
Passaggio 7.2.2.2
Sottrai da .
Passaggio 7.2.2.3
Eleva alla potenza di .
Passaggio 7.2.2.4
Eleva alla potenza di .
Passaggio 7.2.3
Semplifica l'espressione.
Passaggio 7.2.3.1
Moltiplica per .
Passaggio 7.2.3.2
Dividi per .
Passaggio 7.2.4
La risposta finale è .
Passaggio 7.3
Per , la derivata seconda è . Poiché il valore è negativo, la derivata seconda è decrescente nell'intervallo .
Decrescente su perché
Decrescente su perché
Passaggio 8
Un punto di flesso è un punto su una curva in cui la concavità cambia di segno, da più a meno oppure da meno a più. In questo caso il punto di flesso è .
Passaggio 9