Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Differenzia.
Passaggio 1.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.1.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2
Calcola .
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2.3
Moltiplica per .
Passaggio 1.1.3
Calcola .
Passaggio 1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.3.3
Moltiplica per .
Passaggio 1.2
Trova la derivata seconda.
Passaggio 1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.2
Calcola .
Passaggio 1.2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.2.3
Moltiplica per .
Passaggio 1.2.3
Calcola .
Passaggio 1.2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.3.3
Moltiplica per .
Passaggio 1.2.4
Differenzia usando la regola della costante.
Passaggio 1.2.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.4.2
Somma e .
Passaggio 1.3
La derivata seconda di rispetto a è .
Passaggio 2
Passaggio 2.1
Imposta la derivata seconda uguale a .
Passaggio 2.2
Somma a entrambi i lati dell'equazione.
Passaggio 2.3
Dividi per ciascun termine in e semplifica.
Passaggio 2.3.1
Dividi per ciascun termine in .
Passaggio 2.3.2
Semplifica il lato sinistro.
Passaggio 2.3.2.1
Elimina il fattore comune di .
Passaggio 2.3.2.1.1
Elimina il fattore comune.
Passaggio 2.3.2.1.2
Dividi per .
Passaggio 2.3.3
Semplifica il lato destro.
Passaggio 2.3.3.1
Elimina il fattore comune di e .
Passaggio 2.3.3.1.1
Scomponi da .
Passaggio 2.3.3.1.2
Elimina i fattori comuni.
Passaggio 2.3.3.1.2.1
Scomponi da .
Passaggio 2.3.3.1.2.2
Elimina il fattore comune.
Passaggio 2.3.3.1.2.3
Riscrivi l'espressione.
Passaggio 3
Passaggio 3.1
Sostituisci in per trovare il valore di .
Passaggio 3.1.1
Sostituisci la variabile con nell'espressione.
Passaggio 3.1.2
Semplifica il risultato.
Passaggio 3.1.2.1
Semplifica ciascun termine.
Passaggio 3.1.2.1.1
Applica la regola del prodotto a .
Passaggio 3.1.2.1.2
Eleva alla potenza di .
Passaggio 3.1.2.1.3
Eleva alla potenza di .
Passaggio 3.1.2.1.4
Applica la regola del prodotto a .
Passaggio 3.1.2.1.5
Eleva alla potenza di .
Passaggio 3.1.2.1.6
Eleva alla potenza di .
Passaggio 3.1.2.1.7
Moltiplica .
Passaggio 3.1.2.1.7.1
e .
Passaggio 3.1.2.1.7.2
Moltiplica per .
Passaggio 3.1.2.1.8
Sposta il negativo davanti alla frazione.
Passaggio 3.1.2.1.9
Moltiplica .
Passaggio 3.1.2.1.9.1
e .
Passaggio 3.1.2.1.9.2
Moltiplica per .
Passaggio 3.1.2.2
Trova il comune denominatore.
Passaggio 3.1.2.2.1
Moltiplica per .
Passaggio 3.1.2.2.2
Moltiplica per .
Passaggio 3.1.2.2.3
Moltiplica per .
Passaggio 3.1.2.2.4
Moltiplica per .
Passaggio 3.1.2.2.5
Riordina i fattori di .
Passaggio 3.1.2.2.6
Moltiplica per .
Passaggio 3.1.2.2.7
Moltiplica per .
Passaggio 3.1.2.3
Riduci i numeratori su un comune denominatore.
Passaggio 3.1.2.4
Semplifica ciascun termine.
Passaggio 3.1.2.4.1
Moltiplica per .
Passaggio 3.1.2.4.2
Moltiplica per .
Passaggio 3.1.2.5
Semplifica aggiungendo e sottraendo.
Passaggio 3.1.2.5.1
Sottrai da .
Passaggio 3.1.2.5.2
Somma e .
Passaggio 3.1.2.6
La risposta finale è .
Passaggio 3.2
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 4
Dividi in intervalli intorno ai punti che potrebbero potenzialmente essere punti di flesso.
Passaggio 5
Passaggio 5.1
Sostituisci la variabile con nell'espressione.
Passaggio 5.2
Semplifica il risultato.
Passaggio 5.2.1
Moltiplica per .
Passaggio 5.2.2
Sottrai da .
Passaggio 5.2.3
La risposta finale è .
Passaggio 5.3
Per , la derivata seconda è . Poiché il valore è negativo, la derivata seconda è decrescente nell'intervallo .
Decrescente su perché
Decrescente su perché
Passaggio 6
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Passaggio 6.2.1
Moltiplica per .
Passaggio 6.2.2
Sottrai da .
Passaggio 6.2.3
La risposta finale è .
Passaggio 6.3
In corrispondenza di , la derivata seconda è . Poiché il valore è positivo, la derivata seconda è crescente sull'intervallo .
Crescente su perché
Crescente su perché
Passaggio 7
Un punto di flesso è un punto su una curva in cui la concavità cambia di segno, da più a meno oppure da meno a più. In questo caso il punto di flesso è .
Passaggio 8