Inserisci un problema...
Calcolo Esempi
Passaggio 1
Scrivi come funzione.
Passaggio 2
Passaggio 2.1
Trova la derivata prima.
Passaggio 2.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.1.2
Calcola .
Passaggio 2.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.1.2.3
Moltiplica per .
Passaggio 2.1.3
Calcola .
Passaggio 2.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.1.3.3
Moltiplica per .
Passaggio 2.1.4
Calcola .
Passaggio 2.1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.1.4.3
Moltiplica per .
Passaggio 2.1.5
Differenzia usando la regola della costante.
Passaggio 2.1.5.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.5.2
Somma e .
Passaggio 2.2
La derivata prima di rispetto a è .
Passaggio 3
Passaggio 3.1
Poni la derivata prima uguale a .
Passaggio 3.2
Scomponi il primo membro dell'equazione.
Passaggio 3.2.1
Scomponi da .
Passaggio 3.2.1.1
Scomponi da .
Passaggio 3.2.1.2
Scomponi da .
Passaggio 3.2.1.3
Scomponi da .
Passaggio 3.2.1.4
Scomponi da .
Passaggio 3.2.1.5
Scomponi da .
Passaggio 3.2.2
Scomponi.
Passaggio 3.2.2.1
Scomponi mediante raccoglimento.
Passaggio 3.2.2.1.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Passaggio 3.2.2.1.1.1
Scomponi da .
Passaggio 3.2.2.1.1.2
Riscrivi come più .
Passaggio 3.2.2.1.1.3
Applica la proprietà distributiva.
Passaggio 3.2.2.1.1.4
Moltiplica per .
Passaggio 3.2.2.1.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Passaggio 3.2.2.1.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 3.2.2.1.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 3.2.2.1.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 3.2.2.2
Rimuovi le parentesi non necessarie.
Passaggio 3.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 3.4
Imposta uguale a e risolvi per .
Passaggio 3.4.1
Imposta uguale a .
Passaggio 3.4.2
Risolvi per .
Passaggio 3.4.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.4.2.2
Dividi per ciascun termine in e semplifica.
Passaggio 3.4.2.2.1
Dividi per ciascun termine in .
Passaggio 3.4.2.2.2
Semplifica il lato sinistro.
Passaggio 3.4.2.2.2.1
Elimina il fattore comune di .
Passaggio 3.4.2.2.2.1.1
Elimina il fattore comune.
Passaggio 3.4.2.2.2.1.2
Dividi per .
Passaggio 3.4.2.2.3
Semplifica il lato destro.
Passaggio 3.4.2.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 3.5
Imposta uguale a e risolvi per .
Passaggio 3.5.1
Imposta uguale a .
Passaggio 3.5.2
Somma a entrambi i lati dell'equazione.
Passaggio 3.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 4
I valori che rendono la derivata uguale a sono .
Passaggio 5
Dividi in intervalli separati intorno ai valori che rendono la derivata o indefinita.
Passaggio 6
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Passaggio 6.2.1
Semplifica ciascun termine.
Passaggio 6.2.1.1
Eleva alla potenza di .
Passaggio 6.2.1.2
Moltiplica per .
Passaggio 6.2.1.3
Moltiplica per .
Passaggio 6.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 6.2.2.1
Somma e .
Passaggio 6.2.2.2
Sottrai da .
Passaggio 6.2.3
La risposta finale è .
Passaggio 6.3
In corrispondenza di la derivata è . Poiché il valore è positivo, la funzione è crescente su .
Crescente su perché
Crescente su perché
Passaggio 7
Passaggio 7.1
Sostituisci la variabile con nell'espressione.
Passaggio 7.2
Semplifica il risultato.
Passaggio 7.2.1
Semplifica ciascun termine.
Passaggio 7.2.1.1
Eleva alla potenza di .
Passaggio 7.2.1.2
Moltiplica per .
Passaggio 7.2.1.3
Moltiplica per .
Passaggio 7.2.2
Semplifica sottraendo i numeri.
Passaggio 7.2.2.1
Sottrai da .
Passaggio 7.2.2.2
Sottrai da .
Passaggio 7.2.3
La risposta finale è .
Passaggio 7.3
In corrispondenza di la derivata è . Poiché il valore è negativo, la funzione è decrescente su .
Decrescente su perché
Decrescente su perché
Passaggio 8
Passaggio 8.1
Sostituisci la variabile con nell'espressione.
Passaggio 8.2
Semplifica il risultato.
Passaggio 8.2.1
Semplifica ciascun termine.
Passaggio 8.2.1.1
Eleva alla potenza di .
Passaggio 8.2.1.2
Moltiplica per .
Passaggio 8.2.1.3
Moltiplica per .
Passaggio 8.2.2
Semplifica sottraendo i numeri.
Passaggio 8.2.2.1
Sottrai da .
Passaggio 8.2.2.2
Sottrai da .
Passaggio 8.2.3
La risposta finale è .
Passaggio 8.3
In corrispondenza di la derivata è . Poiché il valore è positivo, la funzione è crescente su .
Crescente su perché
Crescente su perché
Passaggio 9
Elenca gli intervalli in cui la funzione è crescente e decrescente.
Crescente su:
Decrescente su:
Passaggio 10