Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata seconda.
Passaggio 1.1.1
Trova la derivata prima.
Passaggio 1.1.1.1
Differenzia usando la regola del quoziente, che indica che è dove e .
Passaggio 1.1.1.2
Differenzia.
Passaggio 1.1.1.2.1
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.1.2.2
Moltiplica per .
Passaggio 1.1.1.2.3
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.1.2.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.1.2.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.1.2.6
Semplifica l'espressione.
Passaggio 1.1.1.2.6.1
Somma e .
Passaggio 1.1.1.2.6.2
Moltiplica per .
Passaggio 1.1.1.3
Eleva alla potenza di .
Passaggio 1.1.1.4
Eleva alla potenza di .
Passaggio 1.1.1.5
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 1.1.1.6
Somma e .
Passaggio 1.1.1.7
Sottrai da .
Passaggio 1.1.2
Trova la derivata seconda.
Passaggio 1.1.2.1
Differenzia usando la regola del quoziente, che indica che è dove e .
Passaggio 1.1.2.2
Differenzia.
Passaggio 1.1.2.2.1
Moltiplica gli esponenti in .
Passaggio 1.1.2.2.1.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 1.1.2.2.1.2
Moltiplica per .
Passaggio 1.1.2.2.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2.2.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2.2.5
Moltiplica per .
Passaggio 1.1.2.2.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2.7
Somma e .
Passaggio 1.1.2.3
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 1.1.2.3.1
Per applicare la regola della catena, imposta come .
Passaggio 1.1.2.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.1.2.4
Differenzia.
Passaggio 1.1.2.4.1
Moltiplica per .
Passaggio 1.1.2.4.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2.4.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2.4.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.4.5
Semplifica l'espressione.
Passaggio 1.1.2.4.5.1
Somma e .
Passaggio 1.1.2.4.5.2
Sposta alla sinistra di .
Passaggio 1.1.2.4.5.3
Moltiplica per .
Passaggio 1.1.2.5
Semplifica.
Passaggio 1.1.2.5.1
Applica la proprietà distributiva.
Passaggio 1.1.2.5.2
Applica la proprietà distributiva.
Passaggio 1.1.2.5.3
Semplifica il numeratore.
Passaggio 1.1.2.5.3.1
Semplifica ciascun termine.
Passaggio 1.1.2.5.3.1.1
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 1.1.2.5.3.1.2
Riscrivi come .
Passaggio 1.1.2.5.3.1.3
Espandi usando il metodo FOIL.
Passaggio 1.1.2.5.3.1.3.1
Applica la proprietà distributiva.
Passaggio 1.1.2.5.3.1.3.2
Applica la proprietà distributiva.
Passaggio 1.1.2.5.3.1.3.3
Applica la proprietà distributiva.
Passaggio 1.1.2.5.3.1.4
Semplifica e combina i termini simili.
Passaggio 1.1.2.5.3.1.4.1
Semplifica ciascun termine.
Passaggio 1.1.2.5.3.1.4.1.1
Moltiplica per sommando gli esponenti.
Passaggio 1.1.2.5.3.1.4.1.1.1
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 1.1.2.5.3.1.4.1.1.2
Somma e .
Passaggio 1.1.2.5.3.1.4.1.2
Sposta alla sinistra di .
Passaggio 1.1.2.5.3.1.4.1.3
Moltiplica per .
Passaggio 1.1.2.5.3.1.4.2
Somma e .
Passaggio 1.1.2.5.3.1.5
Applica la proprietà distributiva.
Passaggio 1.1.2.5.3.1.6
Semplifica.
Passaggio 1.1.2.5.3.1.6.1
Moltiplica per .
Passaggio 1.1.2.5.3.1.6.2
Moltiplica per .
Passaggio 1.1.2.5.3.1.7
Applica la proprietà distributiva.
Passaggio 1.1.2.5.3.1.8
Semplifica.
Passaggio 1.1.2.5.3.1.8.1
Moltiplica per sommando gli esponenti.
Passaggio 1.1.2.5.3.1.8.1.1
Sposta .
Passaggio 1.1.2.5.3.1.8.1.2
Moltiplica per .
Passaggio 1.1.2.5.3.1.8.1.2.1
Eleva alla potenza di .
Passaggio 1.1.2.5.3.1.8.1.2.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 1.1.2.5.3.1.8.1.3
Somma e .
Passaggio 1.1.2.5.3.1.8.2
Moltiplica per sommando gli esponenti.
Passaggio 1.1.2.5.3.1.8.2.1
Sposta .
Passaggio 1.1.2.5.3.1.8.2.2
Moltiplica per .
Passaggio 1.1.2.5.3.1.8.2.2.1
Eleva alla potenza di .
Passaggio 1.1.2.5.3.1.8.2.2.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 1.1.2.5.3.1.8.2.3
Somma e .
Passaggio 1.1.2.5.3.1.9
Semplifica ciascun termine.
Passaggio 1.1.2.5.3.1.9.1
Moltiplica per .
Passaggio 1.1.2.5.3.1.9.2
Moltiplica per .
Passaggio 1.1.2.5.3.1.10
Moltiplica per sommando gli esponenti.
Passaggio 1.1.2.5.3.1.10.1
Moltiplica per .
Passaggio 1.1.2.5.3.1.10.1.1
Eleva alla potenza di .
Passaggio 1.1.2.5.3.1.10.1.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 1.1.2.5.3.1.10.2
Somma e .
Passaggio 1.1.2.5.3.1.11
Espandi usando il metodo FOIL.
Passaggio 1.1.2.5.3.1.11.1
Applica la proprietà distributiva.
Passaggio 1.1.2.5.3.1.11.2
Applica la proprietà distributiva.
Passaggio 1.1.2.5.3.1.11.3
Applica la proprietà distributiva.
Passaggio 1.1.2.5.3.1.12
Semplifica e combina i termini simili.
Passaggio 1.1.2.5.3.1.12.1
Semplifica ciascun termine.
Passaggio 1.1.2.5.3.1.12.1.1
Moltiplica per sommando gli esponenti.
Passaggio 1.1.2.5.3.1.12.1.1.1
Sposta .
Passaggio 1.1.2.5.3.1.12.1.1.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 1.1.2.5.3.1.12.1.1.3
Somma e .
Passaggio 1.1.2.5.3.1.12.1.2
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 1.1.2.5.3.1.12.1.3
Moltiplica per sommando gli esponenti.
Passaggio 1.1.2.5.3.1.12.1.3.1
Sposta .
Passaggio 1.1.2.5.3.1.12.1.3.2
Moltiplica per .
Passaggio 1.1.2.5.3.1.12.1.3.2.1
Eleva alla potenza di .
Passaggio 1.1.2.5.3.1.12.1.3.2.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 1.1.2.5.3.1.12.1.3.3
Somma e .
Passaggio 1.1.2.5.3.1.12.1.4
Moltiplica per .
Passaggio 1.1.2.5.3.1.12.1.5
Moltiplica per .
Passaggio 1.1.2.5.3.1.12.2
Sottrai da .
Passaggio 1.1.2.5.3.1.12.3
Somma e .
Passaggio 1.1.2.5.3.2
Somma e .
Passaggio 1.1.2.5.3.3
Sottrai da .
Passaggio 1.1.2.5.4
Semplifica il numeratore.
Passaggio 1.1.2.5.4.1
Scomponi da .
Passaggio 1.1.2.5.4.1.1
Scomponi da .
Passaggio 1.1.2.5.4.1.2
Scomponi da .
Passaggio 1.1.2.5.4.1.3
Scomponi da .
Passaggio 1.1.2.5.4.1.4
Scomponi da .
Passaggio 1.1.2.5.4.1.5
Scomponi da .
Passaggio 1.1.2.5.4.2
Riscrivi come .
Passaggio 1.1.2.5.4.3
Sia . Sostituisci tutte le occorrenze di con .
Passaggio 1.1.2.5.4.4
Scomponi usando il metodo AC.
Passaggio 1.1.2.5.4.4.1
Considera la forma . Trova una coppia di interi il cui prodotto è e la cui formula è . In questo caso, il cui prodotto è e la cui somma è .
Passaggio 1.1.2.5.4.4.2
Scrivi la forma fattorizzata utilizzando questi interi.
Passaggio 1.1.2.5.4.5
Sostituisci tutte le occorrenze di con .
Passaggio 1.1.2.5.5
Elimina il fattore comune di e .
Passaggio 1.1.2.5.5.1
Scomponi da .
Passaggio 1.1.2.5.5.2
Elimina i fattori comuni.
Passaggio 1.1.2.5.5.2.1
Scomponi da .
Passaggio 1.1.2.5.5.2.2
Elimina il fattore comune.
Passaggio 1.1.2.5.5.2.3
Riscrivi l'espressione.
Passaggio 1.1.3
La derivata seconda di rispetto a è .
Passaggio 1.2
Imposta la derivata seconda pari a , quindi risolvi l'equazione .
Passaggio 1.2.1
Imposta la derivata seconda uguale a .
Passaggio 1.2.2
Poni il numeratore uguale a zero.
Passaggio 1.2.3
Risolvi l'equazione per .
Passaggio 1.2.3.1
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 1.2.3.2
Imposta uguale a .
Passaggio 1.2.3.3
Imposta uguale a e risolvi per .
Passaggio 1.2.3.3.1
Imposta uguale a .
Passaggio 1.2.3.3.2
Risolvi per .
Passaggio 1.2.3.3.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 1.2.3.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 1.2.3.3.2.3
Semplifica .
Passaggio 1.2.3.3.2.3.1
Riscrivi come .
Passaggio 1.2.3.3.2.3.1.1
Scomponi da .
Passaggio 1.2.3.3.2.3.1.2
Riscrivi come .
Passaggio 1.2.3.3.2.3.2
Estrai i termini dal radicale.
Passaggio 1.2.3.3.2.4
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 1.2.3.3.2.4.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 1.2.3.3.2.4.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 1.2.3.3.2.4.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 1.2.3.4
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 2
Passaggio 2.1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 2.2
Risolvi per .
Passaggio 2.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 2.2.3
Semplifica .
Passaggio 2.2.3.1
Riscrivi come .
Passaggio 2.2.3.2
Riscrivi come .
Passaggio 2.2.3.3
Riscrivi come .
Passaggio 2.2.3.4
Riscrivi come .
Passaggio 2.2.3.5
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 2.2.3.6
Sposta alla sinistra di .
Passaggio 2.2.4
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 2.2.4.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 2.2.4.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 2.2.4.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 2.3
Il dominio è l'insieme di numeri reali.
Notazione degli intervalli:
Notazione intensiva:
Notazione degli intervalli:
Notazione intensiva:
Passaggio 3
Crea intervalli attorno ai valori di per cui la derivata seconda è zero o indefinita.
Passaggio 4
Passaggio 4.1
Sostituisci la variabile con nell'espressione.
Passaggio 4.2
Semplifica il risultato.
Passaggio 4.2.1
Moltiplica per .
Passaggio 4.2.2
Semplifica il denominatore.
Passaggio 4.2.2.1
Eleva alla potenza di .
Passaggio 4.2.2.2
Somma e .
Passaggio 4.2.2.3
Eleva alla potenza di .
Passaggio 4.2.3
Semplifica il numeratore.
Passaggio 4.2.3.1
Eleva alla potenza di .
Passaggio 4.2.3.2
Sottrai da .
Passaggio 4.2.4
Semplifica l'espressione.
Passaggio 4.2.4.1
Moltiplica per .
Passaggio 4.2.4.2
Sposta il negativo davanti alla frazione.
Passaggio 4.2.5
La risposta finale è .
Passaggio 4.3
Il grafico è una funzione concava sull'intervallo perché è negativo.
Funzione concava su poiché è negativo
Funzione concava su poiché è negativo
Passaggio 5
Passaggio 5.1
Sostituisci la variabile con nell'espressione.
Passaggio 5.2
Semplifica il risultato.
Passaggio 5.2.1
Moltiplica per .
Passaggio 5.2.2
Semplifica il denominatore.
Passaggio 5.2.2.1
Eleva alla potenza di .
Passaggio 5.2.2.2
Somma e .
Passaggio 5.2.2.3
Eleva alla potenza di .
Passaggio 5.2.3
Semplifica il numeratore.
Passaggio 5.2.3.1
Eleva alla potenza di .
Passaggio 5.2.3.2
Sottrai da .
Passaggio 5.2.4
Moltiplica per .
Passaggio 5.2.5
La risposta finale è .
Passaggio 5.3
Il grafico è una funzione convessa sull'intervallo perché è positivo.
Funzione convessa su poiché è positivo
Funzione convessa su poiché è positivo
Passaggio 6
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Passaggio 6.2.1
Moltiplica per .
Passaggio 6.2.2
Semplifica il denominatore.
Passaggio 6.2.2.1
Eleva alla potenza di .
Passaggio 6.2.2.2
Somma e .
Passaggio 6.2.2.3
Eleva alla potenza di .
Passaggio 6.2.3
Semplifica il numeratore.
Passaggio 6.2.3.1
Eleva alla potenza di .
Passaggio 6.2.3.2
Sottrai da .
Passaggio 6.2.4
Semplifica l'espressione.
Passaggio 6.2.4.1
Moltiplica per .
Passaggio 6.2.4.2
Sposta il negativo davanti alla frazione.
Passaggio 6.2.5
La risposta finale è .
Passaggio 6.3
Il grafico è una funzione concava sull'intervallo perché è negativo.
Funzione concava su poiché è negativo
Funzione concava su poiché è negativo
Passaggio 7
Passaggio 7.1
Sostituisci la variabile con nell'espressione.
Passaggio 7.2
Semplifica il risultato.
Passaggio 7.2.1
Moltiplica per .
Passaggio 7.2.2
Semplifica il denominatore.
Passaggio 7.2.2.1
Eleva alla potenza di .
Passaggio 7.2.2.2
Somma e .
Passaggio 7.2.2.3
Eleva alla potenza di .
Passaggio 7.2.3
Semplifica il numeratore.
Passaggio 7.2.3.1
Eleva alla potenza di .
Passaggio 7.2.3.2
Sottrai da .
Passaggio 7.2.4
Moltiplica per .
Passaggio 7.2.5
La risposta finale è .
Passaggio 7.3
Il grafico è una funzione convessa sull'intervallo perché è positivo.
Funzione convessa su poiché è positivo
Funzione convessa su poiché è positivo
Passaggio 8
Il grafico è una funzione concava quando la derivata seconda è negativa, mentre è una funzione convessa quando la derivata seconda è positiva.
Funzione concava su poiché è negativo
Funzione convessa su poiché è positivo
Funzione concava su poiché è negativo
Funzione convessa su poiché è positivo
Passaggio 9