Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Differenzia usando la regola del quoziente, che indica che è dove e .
Passaggio 1.2
Differenzia.
Passaggio 1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.4
Moltiplica per .
Passaggio 1.2.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.6
Semplifica l'espressione.
Passaggio 1.2.6.1
Somma e .
Passaggio 1.2.6.2
Sposta alla sinistra di .
Passaggio 1.2.7
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.8
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.9
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.10
Moltiplica per .
Passaggio 1.2.11
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.12
Semplifica l'espressione.
Passaggio 1.2.12.1
Somma e .
Passaggio 1.2.12.2
Moltiplica per .
Passaggio 1.3
Semplifica.
Passaggio 1.3.1
Applica la proprietà distributiva.
Passaggio 1.3.2
Applica la proprietà distributiva.
Passaggio 1.3.3
Semplifica il numeratore.
Passaggio 1.3.3.1
Semplifica ciascun termine.
Passaggio 1.3.3.1.1
Moltiplica per .
Passaggio 1.3.3.1.2
Moltiplica per .
Passaggio 1.3.3.1.3
Moltiplica per .
Passaggio 1.3.3.1.4
Moltiplica per .
Passaggio 1.3.3.2
Combina i termini opposti in .
Passaggio 1.3.3.2.1
Sottrai da .
Passaggio 1.3.3.2.2
Somma e .
Passaggio 1.3.3.3
Somma e .
Passaggio 2
Passaggio 2.1
Differenzia usando la regola multipla costante.
Passaggio 2.1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.2
Applica le regole di base degli esponenti.
Passaggio 2.1.2.1
Riscrivi come .
Passaggio 2.1.2.2
Moltiplica gli esponenti in .
Passaggio 2.1.2.2.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 2.1.2.2.2
Moltiplica per .
Passaggio 2.2
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 2.2.1
Per applicare la regola della catena, imposta come .
Passaggio 2.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.3
Differenzia.
Passaggio 2.3.1
Moltiplica per .
Passaggio 2.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.3.5
Moltiplica per .
Passaggio 2.3.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.7
Semplifica l'espressione.
Passaggio 2.3.7.1
Somma e .
Passaggio 2.3.7.2
Moltiplica per .
Passaggio 2.4
Semplifica.
Passaggio 2.4.1
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 2.4.2
Raccogli i termini.
Passaggio 2.4.2.1
e .
Passaggio 2.4.2.2
Sposta il negativo davanti alla frazione.
Passaggio 3
Passaggio 3.1
Differenzia usando la regola multipla costante.
Passaggio 3.1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.1.2
Applica le regole di base degli esponenti.
Passaggio 3.1.2.1
Riscrivi come .
Passaggio 3.1.2.2
Moltiplica gli esponenti in .
Passaggio 3.1.2.2.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 3.1.2.2.2
Moltiplica per .
Passaggio 3.2
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 3.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 3.3
Differenzia.
Passaggio 3.3.1
Moltiplica per .
Passaggio 3.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 3.3.5
Moltiplica per .
Passaggio 3.3.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3.7
Semplifica l'espressione.
Passaggio 3.3.7.1
Somma e .
Passaggio 3.3.7.2
Moltiplica per .
Passaggio 3.4
Semplifica.
Passaggio 3.4.1
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 3.4.2
e .
Passaggio 4
Passaggio 4.1
Differenzia usando la regola multipla costante.
Passaggio 4.1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2
Applica le regole di base degli esponenti.
Passaggio 4.1.2.1
Riscrivi come .
Passaggio 4.1.2.2
Moltiplica gli esponenti in .
Passaggio 4.1.2.2.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 4.1.2.2.2
Moltiplica per .
Passaggio 4.2
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 4.2.1
Per applicare la regola della catena, imposta come .
Passaggio 4.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 4.3
Differenzia.
Passaggio 4.3.1
Moltiplica per .
Passaggio 4.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.3.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.3.5
Moltiplica per .
Passaggio 4.3.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.3.7
Semplifica l'espressione.
Passaggio 4.3.7.1
Somma e .
Passaggio 4.3.7.2
Moltiplica per .
Passaggio 4.4
Semplifica.
Passaggio 4.4.1
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 4.4.2
Raccogli i termini.
Passaggio 4.4.2.1
e .
Passaggio 4.4.2.2
Sposta il negativo davanti alla frazione.