Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.2
Calcola il limite del numeratore.
Passaggio 1.2.1
Calcola il limite.
Passaggio 1.2.1.1
Sposta il limite all'interno della funzione trigonometrica, poiché il seno è continuo.
Passaggio 1.2.1.2
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.2.2
Calcola il limite di inserendo per .
Passaggio 1.2.3
Semplifica la risposta.
Passaggio 1.2.3.1
Moltiplica per .
Passaggio 1.2.3.2
Il valore esatto di è .
Passaggio 1.3
Calcola il limite del denominatore.
Passaggio 1.3.1
Calcola il limite.
Passaggio 1.3.1.1
Sposta il limite all'interno della funzione trigonometrica, poiché la tangente è continua.
Passaggio 1.3.1.2
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.3.2
Calcola il limite di inserendo per .
Passaggio 1.3.3
Semplifica la risposta.
Passaggio 1.3.3.1
Moltiplica per .
Passaggio 1.3.3.2
Il valore esatto di è .
Passaggio 1.3.3.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.3.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 3
Passaggio 3.1
Differenzia numeratore e denominatore.
Passaggio 3.2
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 3.2.2
La derivata di rispetto a è .
Passaggio 3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 3.5
Moltiplica per .
Passaggio 3.6
Sposta alla sinistra di .
Passaggio 3.7
Moltiplica per .
Passaggio 3.8
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 3.8.1
Per applicare la regola della catena, imposta come .
Passaggio 3.8.2
La derivata di rispetto a è .
Passaggio 3.8.3
Sostituisci tutte le occorrenze di con .
Passaggio 3.9
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.10
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 3.11
Moltiplica per .
Passaggio 3.12
Sposta alla sinistra di .
Passaggio 3.13
Moltiplica per .
Passaggio 4
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 5
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 6
Sposta il limite all'interno della funzione trigonometrica, poiché il coseno è continuo.
Passaggio 7
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 8
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 9
Sposta il limite all'interno della funzione trigonometrica, poiché la secante è continua.
Passaggio 10
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 11
Passaggio 11.1
Calcola il limite di inserendo per .
Passaggio 11.2
Calcola il limite di inserendo per .
Passaggio 12
Passaggio 12.1
Combina.
Passaggio 12.2
Scomponi da .
Passaggio 12.3
Frazioni separate.
Passaggio 12.4
Riscrivi in termini di seno e coseno.
Passaggio 12.5
Moltiplica per il reciproco della frazione per dividere per .
Passaggio 12.6
Moltiplica per .
Passaggio 12.7
Moltiplica per .
Passaggio 12.8
Moltiplica per .
Passaggio 12.9
Frazioni separate.
Passaggio 12.10
Riscrivi in termini di seno e coseno.
Passaggio 12.11
Moltiplica per il reciproco della frazione per dividere per .
Passaggio 12.12
Moltiplica per .
Passaggio 12.13
Moltiplica per sommando gli esponenti.
Passaggio 12.13.1
Sposta .
Passaggio 12.13.2
Moltiplica per .
Passaggio 12.14
Moltiplica per sommando gli esponenti.
Passaggio 12.14.1
Sposta .
Passaggio 12.14.2
Moltiplica per .
Passaggio 12.14.2.1
Eleva alla potenza di .
Passaggio 12.14.2.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 12.14.3
Somma e .
Passaggio 12.15
Il valore esatto di è .
Passaggio 12.16
Uno elevato a qualsiasi potenza è uno.
Passaggio 12.17
Moltiplica per .