Calcolo Esempi

Valutare Utilizzando la Regola di L'Hospital limite per x tendente a 1 di ( logaritmo naturale di x^2)/(x^2-1)
Passaggio 1
Calcola il limite del numeratore e il limite del denominatore.
Tocca per altri passaggi...
Passaggio 1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.2
Calcola il limite del numeratore.
Tocca per altri passaggi...
Passaggio 1.2.1
Calcola il limite.
Tocca per altri passaggi...
Passaggio 1.2.1.1
Sposta il limite all'interno del logaritmo.
Passaggio 1.2.1.2
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 1.2.2
Calcola il limite di inserendo per .
Passaggio 1.2.3
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 1.2.3.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 1.2.3.2
Il logaritmo naturale di è .
Passaggio 1.3
Calcola il limite del denominatore.
Tocca per altri passaggi...
Passaggio 1.3.1
Calcola il limite.
Tocca per altri passaggi...
Passaggio 1.3.1.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.3.1.2
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 1.3.1.3
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.3.2
Calcola il limite di inserendo per .
Passaggio 1.3.3
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 1.3.3.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.3.3.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 1.3.3.1.2
Moltiplica per .
Passaggio 1.3.3.2
Sottrai da .
Passaggio 1.3.3.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.3.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 3
Trova la derivata del numeratore e del denominatore.
Tocca per altri passaggi...
Passaggio 3.1
Differenzia numeratore e denominatore.
Passaggio 3.2
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 3.2.2
La derivata di rispetto a è .
Passaggio 3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 3.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 3.4
e .
Passaggio 3.5
e .
Passaggio 3.6
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 3.6.1
Scomponi da .
Passaggio 3.6.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 3.6.2.1
Scomponi da .
Passaggio 3.6.2.2
Elimina il fattore comune.
Passaggio 3.6.2.3
Riscrivi l'espressione.
Passaggio 3.7
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.8
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 3.9
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.10
Somma e .
Passaggio 4
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 5
Combina i fattori.
Tocca per altri passaggi...
Passaggio 5.1
Moltiplica per .
Passaggio 5.2
Eleva alla potenza di .
Passaggio 5.3
Eleva alla potenza di .
Passaggio 5.4
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 5.5
Somma e .
Passaggio 6
Calcola il limite.
Tocca per altri passaggi...
Passaggio 6.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.1.1
Elimina il fattore comune.
Passaggio 6.1.2
Riscrivi l'espressione.
Passaggio 6.2
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 6.3
Calcola il limite di che è costante, mentre tende a .
Passaggio 6.4
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 7
Calcola il limite di inserendo per .
Passaggio 8
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 8.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 8.2
Dividi per .